Metamath Proof Explorer


Theorem fuco2eld

Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fuco2eld.w ( 𝜑𝑊 = ( 𝑆 × 𝑅 ) )
fuco2eld.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
fuco2eld.k ( 𝜑𝐾 𝑆 𝐿 )
fuco2eld.f ( 𝜑𝐹 𝑅 𝐺 )
Assertion fuco2eld ( 𝜑𝑈𝑊 )

Proof

Step Hyp Ref Expression
1 fuco2eld.w ( 𝜑𝑊 = ( 𝑆 × 𝑅 ) )
2 fuco2eld.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
3 fuco2eld.k ( 𝜑𝐾 𝑆 𝐿 )
4 fuco2eld.f ( 𝜑𝐹 𝑅 𝐺 )
5 fuco2el ( ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ ∈ ( 𝑆 × 𝑅 ) ↔ ( 𝐾 𝑆 𝐿𝐹 𝑅 𝐺 ) )
6 3 4 5 sylanbrc ( 𝜑 → ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ ∈ ( 𝑆 × 𝑅 ) )
7 6 2 1 3eltr4d ( 𝜑𝑈𝑊 )