Metamath Proof Explorer


Theorem fuco2eld

Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fuco2eld.w φ W = S × R
fuco2eld.u φ U = K L F G
fuco2eld.k φ K S L
fuco2eld.f φ F R G
Assertion fuco2eld φ U W

Proof

Step Hyp Ref Expression
1 fuco2eld.w φ W = S × R
2 fuco2eld.u φ U = K L F G
3 fuco2eld.k φ K S L
4 fuco2eld.f φ F R G
5 fuco2el K L F G S × R K S L F R G
6 3 4 5 sylanbrc φ K L F G S × R
7 6 2 1 3eltr4d φ U W