Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fuco2eld.w | |- ( ph -> W = ( S X. R ) ) |
|
fuco2eld.u | |- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
||
fuco2eld.k | |- ( ph -> K S L ) |
||
fuco2eld.f | |- ( ph -> F R G ) |
||
Assertion | fuco2eld | |- ( ph -> U e. W ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fuco2eld.w | |- ( ph -> W = ( S X. R ) ) |
|
2 | fuco2eld.u | |- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
|
3 | fuco2eld.k | |- ( ph -> K S L ) |
|
4 | fuco2eld.f | |- ( ph -> F R G ) |
|
5 | fuco2el | |- ( <. <. K , L >. , <. F , G >. >. e. ( S X. R ) <-> ( K S L /\ F R G ) ) |
|
6 | 3 4 5 | sylanbrc | |- ( ph -> <. <. K , L >. , <. F , G >. >. e. ( S X. R ) ) |
7 | 6 2 1 | 3eltr4d | |- ( ph -> U e. W ) |