Metamath Proof Explorer


Theorem fuco2eld

Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fuco2eld.w
|- ( ph -> W = ( S X. R ) )
fuco2eld.u
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. )
fuco2eld.k
|- ( ph -> K S L )
fuco2eld.f
|- ( ph -> F R G )
Assertion fuco2eld
|- ( ph -> U e. W )

Proof

Step Hyp Ref Expression
1 fuco2eld.w
 |-  ( ph -> W = ( S X. R ) )
2 fuco2eld.u
 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )
3 fuco2eld.k
 |-  ( ph -> K S L )
4 fuco2eld.f
 |-  ( ph -> F R G )
5 fuco2el
 |-  ( <. <. K , L >. , <. F , G >. >. e. ( S X. R ) <-> ( K S L /\ F R G ) )
6 3 4 5 sylanbrc
 |-  ( ph -> <. <. K , L >. , <. F , G >. >. e. ( S X. R ) )
7 6 2 1 3eltr4d
 |-  ( ph -> U e. W )