Metamath Proof Explorer


Theorem fuco2el

Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Assertion fuco2el
|- ( <. <. K , L >. , <. F , G >. >. e. ( S X. R ) <-> ( K S L /\ F R G ) )

Proof

Step Hyp Ref Expression
1 opelxp
 |-  ( <. <. K , L >. , <. F , G >. >. e. ( S X. R ) <-> ( <. K , L >. e. S /\ <. F , G >. e. R ) )
2 df-br
 |-  ( K S L <-> <. K , L >. e. S )
3 df-br
 |-  ( F R G <-> <. F , G >. e. R )
4 2 3 anbi12i
 |-  ( ( K S L /\ F R G ) <-> ( <. K , L >. e. S /\ <. F , G >. e. R ) )
5 1 4 bitr4i
 |-  ( <. <. K , L >. , <. F , G >. >. e. ( S X. R ) <-> ( K S L /\ F R G ) )