Metamath Proof Explorer


Theorem fuco2el

Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Assertion fuco2el ( ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ ∈ ( 𝑆 × 𝑅 ) ↔ ( 𝐾 𝑆 𝐿𝐹 𝑅 𝐺 ) )

Proof

Step Hyp Ref Expression
1 opelxp ( ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ ∈ ( 𝑆 × 𝑅 ) ↔ ( ⟨ 𝐾 , 𝐿 ⟩ ∈ 𝑆 ∧ ⟨ 𝐹 , 𝐺 ⟩ ∈ 𝑅 ) )
2 df-br ( 𝐾 𝑆 𝐿 ↔ ⟨ 𝐾 , 𝐿 ⟩ ∈ 𝑆 )
3 df-br ( 𝐹 𝑅 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ 𝑅 )
4 2 3 anbi12i ( ( 𝐾 𝑆 𝐿𝐹 𝑅 𝐺 ) ↔ ( ⟨ 𝐾 , 𝐿 ⟩ ∈ 𝑆 ∧ ⟨ 𝐹 , 𝐺 ⟩ ∈ 𝑅 ) )
5 1 4 bitr4i ( ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ ∈ ( 𝑆 × 𝑅 ) ↔ ( 𝐾 𝑆 𝐿𝐹 𝑅 𝐺 ) )