Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
2 |
|
fuco11.f |
|- ( ph -> F ( C Func D ) G ) |
3 |
|
fuco11.k |
|- ( ph -> K ( D Func E ) L ) |
4 |
|
fuco11.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
5 |
2
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
6 |
3
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
7 |
3
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
8 |
|
eqidd |
|- ( ph -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
9 |
5 6 7 1 8
|
fuco1 |
|- ( ph -> O = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
10 |
9
|
fveq1d |
|- ( ph -> ( O ` U ) = ( ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ` U ) ) |
11 |
8 4 3 2
|
fuco2eld |
|- ( ph -> U e. ( ( D Func E ) X. ( C Func D ) ) ) |
12 |
11
|
fvresd |
|- ( ph -> ( ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ` U ) = ( o.func ` U ) ) |
13 |
4
|
fveq2d |
|- ( ph -> ( o.func ` U ) = ( o.func ` <. <. K , L >. , <. F , G >. >. ) ) |
14 |
|
df-ov |
|- ( <. K , L >. o.func <. F , G >. ) = ( o.func ` <. <. K , L >. , <. F , G >. >. ) |
15 |
13 14
|
eqtr4di |
|- ( ph -> ( o.func ` U ) = ( <. K , L >. o.func <. F , G >. ) ) |
16 |
10 12 15
|
3eqtrd |
|- ( ph -> ( O ` U ) = ( <. K , L >. o.func <. F , G >. ) ) |