| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco11.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco11.f | 
							 |-  ( ph -> F ( C Func D ) G )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco11.k | 
							 |-  ( ph -> K ( D Func E ) L )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco11.u | 
							 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 5 | 
							
								2
							 | 
							funcrcl2 | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 6 | 
							
								3
							 | 
							funcrcl2 | 
							 |-  ( ph -> D e. Cat )  | 
						
						
							| 7 | 
							
								3
							 | 
							funcrcl3 | 
							 |-  ( ph -> E e. Cat )  | 
						
						
							| 8 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 9 | 
							
								5 6 7 1 8
							 | 
							fuco1 | 
							 |-  ( ph -> O = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq1d | 
							 |-  ( ph -> ( O ` U ) = ( ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ` U ) )  | 
						
						
							| 11 | 
							
								8 4 3 2
							 | 
							fuco2eld | 
							 |-  ( ph -> U e. ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							fvresd | 
							 |-  ( ph -> ( ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ` U ) = ( o.func ` U ) )  | 
						
						
							| 13 | 
							
								4
							 | 
							fveq2d | 
							 |-  ( ph -> ( o.func ` U ) = ( o.func ` <. <. K , L >. , <. F , G >. >. ) )  | 
						
						
							| 14 | 
							
								
							 | 
							df-ov | 
							 |-  ( <. K , L >. o.func <. F , G >. ) = ( o.func ` <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							eqtr4di | 
							 |-  ( ph -> ( o.func ` U ) = ( <. K , L >. o.func <. F , G >. ) )  | 
						
						
							| 16 | 
							
								10 12 15
							 | 
							3eqtrd | 
							 |-  ( ph -> ( O ` U ) = ( <. K , L >. o.func <. F , G >. ) )  |