| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fucofval.c | 
							 |-  ( ph -> C e. T )  | 
						
						
							| 2 | 
							
								
							 | 
							fucofval.d | 
							 |-  ( ph -> D e. U )  | 
						
						
							| 3 | 
							
								
							 | 
							fucofval.e | 
							 |-  ( ph -> E e. V )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco1.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco1.w | 
							 |-  ( ph -> W = ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							fucofval | 
							 |-  ( ph -> <. O , P >. = <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. )  | 
						
						
							| 7 | 
							
								1 2 3 4
							 | 
							fucoelvv | 
							 |-  ( ph -> <. O , P >. e. ( _V X. _V ) )  | 
						
						
							| 8 | 
							
								
							 | 
							opelxp1 | 
							 |-  ( <. O , P >. e. ( _V X. _V ) -> O e. _V )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							 |-  ( ph -> O e. _V )  | 
						
						
							| 10 | 
							
								
							 | 
							opelxp2 | 
							 |-  ( <. O , P >. e. ( _V X. _V ) -> P e. _V )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							syl | 
							 |-  ( ph -> P e. _V )  | 
						
						
							| 12 | 
							
								
							 | 
							opth1g | 
							 |-  ( ( O e. _V /\ P e. _V ) -> ( <. O , P >. = <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. -> O = ( o.func |` W ) ) )  | 
						
						
							| 13 | 
							
								9 11 12
							 | 
							syl2anc | 
							 |-  ( ph -> ( <. O , P >. = <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. -> O = ( o.func |` W ) ) )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							mpd | 
							 |-  ( ph -> O = ( o.func |` W ) )  |