Step |
Hyp |
Ref |
Expression |
1 |
|
fucofval.c |
|- ( ph -> C e. T ) |
2 |
|
fucofval.d |
|- ( ph -> D e. U ) |
3 |
|
fucofval.e |
|- ( ph -> E e. V ) |
4 |
|
fuco1.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
5 |
|
fuco1.w |
|- ( ph -> W = ( ( D Func E ) X. ( C Func D ) ) ) |
6 |
|
rescofuf |
|- ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) |
7 |
1 2 3 4 5
|
fuco1 |
|- ( ph -> O = ( o.func |` W ) ) |
8 |
5
|
reseq2d |
|- ( ph -> ( o.func |` W ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
9 |
7 8
|
eqtrd |
|- ( ph -> O = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
10 |
9 5
|
feq12d |
|- ( ph -> ( O : W --> ( C Func E ) <-> ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) ) ) |
11 |
6 10
|
mpbiri |
|- ( ph -> O : W --> ( C Func E ) ) |