Metamath Proof Explorer


Theorem fucof1

Description: The object part of the functor composition bifunctor maps ( ( D Func E ) X. ( C Func D ) ) into ( C Func E ) . (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fucofval.c
|- ( ph -> C e. T )
fucofval.d
|- ( ph -> D e. U )
fucofval.e
|- ( ph -> E e. V )
fuco1.o
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
fuco1.w
|- ( ph -> W = ( ( D Func E ) X. ( C Func D ) ) )
Assertion fucof1
|- ( ph -> O : W --> ( C Func E ) )

Proof

Step Hyp Ref Expression
1 fucofval.c
 |-  ( ph -> C e. T )
2 fucofval.d
 |-  ( ph -> D e. U )
3 fucofval.e
 |-  ( ph -> E e. V )
4 fuco1.o
 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
5 fuco1.w
 |-  ( ph -> W = ( ( D Func E ) X. ( C Func D ) ) )
6 rescofuf
 |-  ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E )
7 1 2 3 4 5 fuco1
 |-  ( ph -> O = ( o.func |` W ) )
8 5 reseq2d
 |-  ( ph -> ( o.func |` W ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )
9 7 8 eqtrd
 |-  ( ph -> O = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )
10 9 5 feq12d
 |-  ( ph -> ( O : W --> ( C Func E ) <-> ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) ) )
11 6 10 mpbiri
 |-  ( ph -> O : W --> ( C Func E ) )