| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fucofval.c | 
							 |-  ( ph -> C e. T )  | 
						
						
							| 2 | 
							
								
							 | 
							fucofval.d | 
							 |-  ( ph -> D e. U )  | 
						
						
							| 3 | 
							
								
							 | 
							fucofval.e | 
							 |-  ( ph -> E e. V )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco1.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco1.w | 
							 |-  ( ph -> W = ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							rescofuf | 
							 |-  ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E )  | 
						
						
							| 7 | 
							
								1 2 3 4 5
							 | 
							fuco1 | 
							 |-  ( ph -> O = ( o.func |` W ) )  | 
						
						
							| 8 | 
							
								5
							 | 
							reseq2d | 
							 |-  ( ph -> ( o.func |` W ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtrd | 
							 |-  ( ph -> O = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )  | 
						
						
							| 10 | 
							
								9 5
							 | 
							feq12d | 
							 |-  ( ph -> ( O : W --> ( C Func E ) <-> ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							mpbiri | 
							 |-  ( ph -> O : W --> ( C Func E ) )  |