Metamath Proof Explorer


Theorem fucof1

Description: The object part of the functor composition bifunctor maps ( ( D Func E ) X. ( C Func D ) ) into ( C Func E ) . (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fucofval.c ( 𝜑𝐶𝑇 )
fucofval.d ( 𝜑𝐷𝑈 )
fucofval.e ( 𝜑𝐸𝑉 )
fuco1.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fuco1.w ( 𝜑𝑊 = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) )
Assertion fucof1 ( 𝜑𝑂 : 𝑊 ⟶ ( 𝐶 Func 𝐸 ) )

Proof

Step Hyp Ref Expression
1 fucofval.c ( 𝜑𝐶𝑇 )
2 fucofval.d ( 𝜑𝐷𝑈 )
3 fucofval.e ( 𝜑𝐸𝑉 )
4 fuco1.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
5 fuco1.w ( 𝜑𝑊 = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) )
6 rescofuf ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) : ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ⟶ ( 𝐶 Func 𝐸 )
7 1 2 3 4 5 fuco1 ( 𝜑𝑂 = ( ∘func𝑊 ) )
8 5 reseq2d ( 𝜑 → ( ∘func𝑊 ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) )
9 7 8 eqtrd ( 𝜑𝑂 = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) )
10 9 5 feq12d ( 𝜑 → ( 𝑂 : 𝑊 ⟶ ( 𝐶 Func 𝐸 ) ↔ ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) : ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ⟶ ( 𝐶 Func 𝐸 ) ) )
11 6 10 mpbiri ( 𝜑𝑂 : 𝑊 ⟶ ( 𝐶 Func 𝐸 ) )