| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucofval.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) |
| 2 |
|
fucofval.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) |
| 3 |
|
fucofval.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 4 |
|
fuco1.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
| 5 |
|
fuco1.w |
⊢ ( 𝜑 → 𝑊 = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
| 6 |
|
rescofuf |
⊢ ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) : ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ⟶ ( 𝐶 Func 𝐸 ) |
| 7 |
1 2 3 4 5
|
fuco1 |
⊢ ( 𝜑 → 𝑂 = ( ∘func ↾ 𝑊 ) ) |
| 8 |
5
|
reseq2d |
⊢ ( 𝜑 → ( ∘func ↾ 𝑊 ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
| 9 |
7 8
|
eqtrd |
⊢ ( 𝜑 → 𝑂 = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
| 10 |
9 5
|
feq12d |
⊢ ( 𝜑 → ( 𝑂 : 𝑊 ⟶ ( 𝐶 Func 𝐸 ) ↔ ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) : ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ⟶ ( 𝐶 Func 𝐸 ) ) ) |
| 11 |
6 10
|
mpbiri |
⊢ ( 𝜑 → 𝑂 : 𝑊 ⟶ ( 𝐶 Func 𝐸 ) ) |