Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco11.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
3 |
|
fuco11.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
4 |
|
fuco11.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
5 |
2
|
funcrcl2 |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
6 |
3
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
7 |
3
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
9 |
5 6 7 1 8
|
fucof1 |
⊢ ( 𝜑 → 𝑂 : ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ⟶ ( 𝐶 Func 𝐸 ) ) |
10 |
8 4 3 2
|
fuco2eld |
⊢ ( 𝜑 → 𝑈 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
11 |
9 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑈 ) ∈ ( 𝐶 Func 𝐸 ) ) |