| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco11.o | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  〈 𝑂 ,  𝑃 〉 )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco11.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco11.k | 
							⊢ ( 𝜑  →  𝐾 ( 𝐷  Func  𝐸 ) 𝐿 )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco11.u | 
							⊢ ( 𝜑  →  𝑈  =  〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 )  | 
						
						
							| 5 | 
							
								2
							 | 
							funcrcl2 | 
							⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
						
						
							| 6 | 
							
								3
							 | 
							funcrcl2 | 
							⊢ ( 𝜑  →  𝐷  ∈  Cat )  | 
						
						
							| 7 | 
							
								3
							 | 
							funcrcl3 | 
							⊢ ( 𝜑  →  𝐸  ∈  Cat )  | 
						
						
							| 8 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) )  =  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  | 
						
						
							| 9 | 
							
								5 6 7 1 8
							 | 
							fucof1 | 
							⊢ ( 𝜑  →  𝑂 : ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) ⟶ ( 𝐶  Func  𝐸 ) )  | 
						
						
							| 10 | 
							
								8 4 3 2
							 | 
							fuco2eld | 
							⊢ ( 𝜑  →  𝑈  ∈  ( ( 𝐷  Func  𝐸 )  ×  ( 𝐶  Func  𝐷 ) ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑈 )  ∈  ( 𝐶  Func  𝐸 ) )  |