Metamath Proof Explorer


Theorem fuco11cl

Description: The object part of the functor composition bifunctor maps into ( C Func E ) . (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco11.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco11.f φ F C Func D G
fuco11.k φ K D Func E L
fuco11.u φ U = K L F G
Assertion fuco11cl φ O U C Func E

Proof

Step Hyp Ref Expression
1 fuco11.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco11.f φ F C Func D G
3 fuco11.k φ K D Func E L
4 fuco11.u φ U = K L F G
5 2 funcrcl2 φ C Cat
6 3 funcrcl2 φ D Cat
7 3 funcrcl3 φ E Cat
8 eqidd φ D Func E × C Func D = D Func E × C Func D
9 5 6 7 1 8 fucof1 φ O : D Func E × C Func D C Func E
10 8 4 3 2 fuco2eld φ U D Func E × C Func D
11 9 10 ffvelcdmd φ O U C Func E