Metamath Proof Explorer


Theorem fuco11a

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco11.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco11.f φ F C Func D G
fuco11.k φ K D Func E L
fuco11.u φ U = K L F G
fuco11a.b B = Base C
Assertion fuco11a φ O U = K F x B , y B F x L F y x G y

Proof

Step Hyp Ref Expression
1 fuco11.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco11.f φ F C Func D G
3 fuco11.k φ K D Func E L
4 fuco11.u φ U = K L F G
5 fuco11a.b B = Base C
6 1 2 3 4 fuco11 φ O U = K L func F G
7 5 2 3 cofuval2 φ K L func F G = K F x B , y B F x L F y x G y
8 6 7 eqtrd φ O U = K F x B , y B F x L F y x G y