Metamath Proof Explorer


Theorem fuco11a

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
fuco11a.b 𝐵 = ( Base ‘ 𝐶 )
Assertion fuco11a ( 𝜑 → ( 𝑂𝑈 ) = ⟨ ( 𝐾𝐹 ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
3 fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
4 fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
5 fuco11a.b 𝐵 = ( Base ‘ 𝐶 )
6 1 2 3 4 fuco11 ( 𝜑 → ( 𝑂𝑈 ) = ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) )
7 5 2 3 cofuval2 ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = ⟨ ( 𝐾𝐹 ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ⟩ )
8 6 7 eqtrd ( 𝜑 → ( 𝑂𝑈 ) = ⟨ ( 𝐾𝐹 ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ⟩ )