Metamath Proof Explorer


Theorem fuco11a

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco11.o
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
fuco11.f
|- ( ph -> F ( C Func D ) G )
fuco11.k
|- ( ph -> K ( D Func E ) L )
fuco11.u
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. )
fuco11a.b
|- B = ( Base ` C )
Assertion fuco11a
|- ( ph -> ( O ` U ) = <. ( K o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) >. )

Proof

Step Hyp Ref Expression
1 fuco11.o
 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
2 fuco11.f
 |-  ( ph -> F ( C Func D ) G )
3 fuco11.k
 |-  ( ph -> K ( D Func E ) L )
4 fuco11.u
 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )
5 fuco11a.b
 |-  B = ( Base ` C )
6 1 2 3 4 fuco11
 |-  ( ph -> ( O ` U ) = ( <. K , L >. o.func <. F , G >. ) )
7 5 2 3 cofuval2
 |-  ( ph -> ( <. K , L >. o.func <. F , G >. ) = <. ( K o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) >. )
8 6 7 eqtrd
 |-  ( ph -> ( O ` U ) = <. ( K o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) >. )