| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco11.o | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  〈 𝑂 ,  𝑃 〉 )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco11.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco11.k | 
							⊢ ( 𝜑  →  𝐾 ( 𝐷  Func  𝐸 ) 𝐿 )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco11.u | 
							⊢ ( 𝜑  →  𝑈  =  〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco11a.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							fuco11a | 
							⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑈 )  =  〈 ( 𝐾  ∘  𝐹 ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) ) ) 〉 )  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝑂 ‘ 𝑈 ) )  =  ( 2nd  ‘ 〈 ( 𝐾  ∘  𝐹 ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							relfunc | 
							⊢ Rel  ( 𝐷  Func  𝐸 )  | 
						
						
							| 9 | 
							
								8
							 | 
							brrelex1i | 
							⊢ ( 𝐾 ( 𝐷  Func  𝐸 ) 𝐿  →  𝐾  ∈  V )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐾  ∈  V )  | 
						
						
							| 11 | 
							
								
							 | 
							relfunc | 
							⊢ Rel  ( 𝐶  Func  𝐷 )  | 
						
						
							| 12 | 
							
								11
							 | 
							brrelex1i | 
							⊢ ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  →  𝐹  ∈  V )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹  ∈  V )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							coexd | 
							⊢ ( 𝜑  →  ( 𝐾  ∘  𝐹 )  ∈  V )  | 
						
						
							| 15 | 
							
								5
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 16 | 
							
								15 15
							 | 
							mpoex | 
							⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) ) )  ∈  V  | 
						
						
							| 17 | 
							
								
							 | 
							op2ndg | 
							⊢ ( ( ( 𝐾  ∘  𝐹 )  ∈  V  ∧  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) ) )  ∈  V )  →  ( 2nd  ‘ 〈 ( 𝐾  ∘  𝐹 ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) ) ) 〉 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) ) ) )  | 
						
						
							| 18 | 
							
								14 16 17
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 2nd  ‘ 〈 ( 𝐾  ∘  𝐹 ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) ) ) 〉 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) ) ) )  | 
						
						
							| 19 | 
							
								7 18
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝑂 ‘ 𝑈 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) ) ) )  |