Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco11.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
3 |
|
fuco11.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
4 |
|
fuco11.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
1 2 3 4 5
|
fuco11a |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑈 ) = 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) |
7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ ( 𝑂 ‘ 𝑈 ) ) = ( 1st ‘ 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) ) |
8 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
9 |
8
|
brrelex1i |
⊢ ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 → 𝐾 ∈ V ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
11 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
12 |
11
|
brrelex1i |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐹 ∈ V ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
14 |
10 13
|
coexd |
⊢ ( 𝜑 → ( 𝐾 ∘ 𝐹 ) ∈ V ) |
15 |
|
fvex |
⊢ ( Base ‘ 𝐶 ) ∈ V |
16 |
15 15
|
mpoex |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ∈ V |
17 |
|
op1stg |
⊢ ( ( ( 𝐾 ∘ 𝐹 ) ∈ V ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ∈ V ) → ( 1st ‘ 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) = ( 𝐾 ∘ 𝐹 ) ) |
18 |
14 16 17
|
sylancl |
⊢ ( 𝜑 → ( 1st ‘ 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) = ( 𝐾 ∘ 𝐹 ) ) |
19 |
7 18
|
eqtrd |
⊢ ( 𝜑 → ( 1st ‘ ( 𝑂 ‘ 𝑈 ) ) = ( 𝐾 ∘ 𝐹 ) ) |