Metamath Proof Explorer


Theorem fuco111

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
Assertion fuco111 ( 𝜑 → ( 1st ‘ ( 𝑂𝑈 ) ) = ( 𝐾𝐹 ) )

Proof

Step Hyp Ref Expression
1 fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
3 fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
4 fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
5 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
6 1 2 3 4 5 fuco11a ( 𝜑 → ( 𝑂𝑈 ) = ⟨ ( 𝐾𝐹 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ⟩ )
7 6 fveq2d ( 𝜑 → ( 1st ‘ ( 𝑂𝑈 ) ) = ( 1st ‘ ⟨ ( 𝐾𝐹 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ⟩ ) )
8 relfunc Rel ( 𝐷 Func 𝐸 )
9 8 brrelex1i ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿𝐾 ∈ V )
10 3 9 syl ( 𝜑𝐾 ∈ V )
11 relfunc Rel ( 𝐶 Func 𝐷 )
12 11 brrelex1i ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝐹 ∈ V )
13 2 12 syl ( 𝜑𝐹 ∈ V )
14 10 13 coexd ( 𝜑 → ( 𝐾𝐹 ) ∈ V )
15 fvex ( Base ‘ 𝐶 ) ∈ V
16 15 15 mpoex ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ∈ V
17 op1stg ( ( ( 𝐾𝐹 ) ∈ V ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ∈ V ) → ( 1st ‘ ⟨ ( 𝐾𝐹 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ⟩ ) = ( 𝐾𝐹 ) )
18 14 16 17 sylancl ( 𝜑 → ( 1st ‘ ⟨ ( 𝐾𝐹 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ⟩ ) = ( 𝐾𝐹 ) )
19 7 18 eqtrd ( 𝜑 → ( 1st ‘ ( 𝑂𝑈 ) ) = ( 𝐾𝐹 ) )