| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco11.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
| 2 |
|
fuco11.f |
|- ( ph -> F ( C Func D ) G ) |
| 3 |
|
fuco11.k |
|- ( ph -> K ( D Func E ) L ) |
| 4 |
|
fuco11.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
| 5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 6 |
1 2 3 4 5
|
fuco11a |
|- ( ph -> ( O ` U ) = <. ( K o. F ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) >. ) |
| 7 |
6
|
fveq2d |
|- ( ph -> ( 1st ` ( O ` U ) ) = ( 1st ` <. ( K o. F ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) >. ) ) |
| 8 |
|
relfunc |
|- Rel ( D Func E ) |
| 9 |
8
|
brrelex1i |
|- ( K ( D Func E ) L -> K e. _V ) |
| 10 |
3 9
|
syl |
|- ( ph -> K e. _V ) |
| 11 |
|
relfunc |
|- Rel ( C Func D ) |
| 12 |
11
|
brrelex1i |
|- ( F ( C Func D ) G -> F e. _V ) |
| 13 |
2 12
|
syl |
|- ( ph -> F e. _V ) |
| 14 |
10 13
|
coexd |
|- ( ph -> ( K o. F ) e. _V ) |
| 15 |
|
fvex |
|- ( Base ` C ) e. _V |
| 16 |
15 15
|
mpoex |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) e. _V |
| 17 |
|
op1stg |
|- ( ( ( K o. F ) e. _V /\ ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) e. _V ) -> ( 1st ` <. ( K o. F ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) >. ) = ( K o. F ) ) |
| 18 |
14 16 17
|
sylancl |
|- ( ph -> ( 1st ` <. ( K o. F ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) >. ) = ( K o. F ) ) |
| 19 |
7 18
|
eqtrd |
|- ( ph -> ( 1st ` ( O ` U ) ) = ( K o. F ) ) |