Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco11.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
3 |
|
fuco11.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
4 |
|
fuco11.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
5 |
|
fuco111x.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
6 |
1 2 3 4
|
fuco111 |
⊢ ( 𝜑 → ( 1st ‘ ( 𝑂 ‘ 𝑈 ) ) = ( 𝐾 ∘ 𝐹 ) ) |
7 |
6
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑂 ‘ 𝑈 ) ) ‘ 𝑋 ) = ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
10 |
8 9 2
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
11 |
10 5
|
fvco3d |
⊢ ( 𝜑 → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
12 |
7 11
|
eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑂 ‘ 𝑈 ) ) ‘ 𝑋 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |