| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco11.o | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  〈 𝑂 ,  𝑃 〉 )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco11.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco11.k | 
							⊢ ( 𝜑  →  𝐾 ( 𝐷  Func  𝐸 ) 𝐿 )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco11.u | 
							⊢ ( 𝜑  →  𝑈  =  〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco111x.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco112x.y | 
							⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 8 | 
							
								1 2 3 4 7
							 | 
							fuco112 | 
							⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝑂 ‘ 𝑈 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 ) ,  𝑦  ∈  ( Base ‘ 𝐶 )  ↦  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  𝑥  =  𝑋 )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  𝑦  =  𝑌 )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑌 ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 14 | 
							
								9 11
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑥 𝐺 𝑦 )  =  ( 𝑋 𝐺 𝑌 ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							coeq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) )  ∘  ( 𝑥 𝐺 𝑦 ) )  =  ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) )  ∘  ( 𝑋 𝐺 𝑌 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							ovexd | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) )  ∈  V )  | 
						
						
							| 17 | 
							
								
							 | 
							ovexd | 
							⊢ ( 𝜑  →  ( 𝑋 𝐺 𝑌 )  ∈  V )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							coexd | 
							⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) )  ∘  ( 𝑋 𝐺 𝑌 ) )  ∈  V )  | 
						
						
							| 19 | 
							
								8 15 5 6 18
							 | 
							ovmpod | 
							⊢ ( 𝜑  →  ( 𝑋 ( 2nd  ‘ ( 𝑂 ‘ 𝑈 ) ) 𝑌 )  =  ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) )  ∘  ( 𝑋 𝐺 𝑌 ) ) )  |