Metamath Proof Explorer


Theorem fuco112x

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
fuco111x.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
fuco112x.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
Assertion fuco112x ( 𝜑 → ( 𝑋 ( 2nd ‘ ( 𝑂𝑈 ) ) 𝑌 ) = ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
3 fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
4 fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
5 fuco111x.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
6 fuco112x.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
7 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
8 1 2 3 4 7 fuco112 ( 𝜑 → ( 2nd ‘ ( 𝑂𝑈 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) )
9 simprl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 )
10 9 fveq2d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
11 simprr ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 )
12 11 fveq2d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝐹𝑦 ) = ( 𝐹𝑌 ) )
13 10 12 oveq12d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) )
14 9 11 oveq12d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑋 𝐺 𝑌 ) )
15 13 14 coeq12d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) = ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) )
16 ovexd ( 𝜑 → ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ∈ V )
17 ovexd ( 𝜑 → ( 𝑋 𝐺 𝑌 ) ∈ V )
18 16 17 coexd ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) ∈ V )
19 8 15 5 6 18 ovmpod ( 𝜑 → ( 𝑋 ( 2nd ‘ ( 𝑂𝑈 ) ) 𝑌 ) = ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) )