| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco11.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco11.f | 
							 |-  ( ph -> F ( C Func D ) G )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco11.k | 
							 |-  ( ph -> K ( D Func E ) L )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco11.u | 
							 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco111x.x | 
							 |-  ( ph -> X e. ( Base ` C ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco112x.y | 
							 |-  ( ph -> Y e. ( Base ` C ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 8 | 
							
								1 2 3 4 7
							 | 
							fuco112 | 
							 |-  ( ph -> ( 2nd ` ( O ` U ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2d | 
							 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F ` x ) = ( F ` X ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq2d | 
							 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F ` y ) = ( F ` Y ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							oveq12d | 
							 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( F ` x ) L ( F ` y ) ) = ( ( F ` X ) L ( F ` Y ) ) )  | 
						
						
							| 14 | 
							
								9 11
							 | 
							oveq12d | 
							 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x G y ) = ( X G Y ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							coeq12d | 
							 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) = ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							ovexd | 
							 |-  ( ph -> ( ( F ` X ) L ( F ` Y ) ) e. _V )  | 
						
						
							| 17 | 
							
								
							 | 
							ovexd | 
							 |-  ( ph -> ( X G Y ) e. _V )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							coexd | 
							 |-  ( ph -> ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) e. _V )  | 
						
						
							| 19 | 
							
								8 15 5 6 18
							 | 
							ovmpod | 
							 |-  ( ph -> ( X ( 2nd ` ( O ` U ) ) Y ) = ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) )  |