Metamath Proof Explorer


Theorem fuco112x

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco11.o
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
fuco11.f
|- ( ph -> F ( C Func D ) G )
fuco11.k
|- ( ph -> K ( D Func E ) L )
fuco11.u
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. )
fuco111x.x
|- ( ph -> X e. ( Base ` C ) )
fuco112x.y
|- ( ph -> Y e. ( Base ` C ) )
Assertion fuco112x
|- ( ph -> ( X ( 2nd ` ( O ` U ) ) Y ) = ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) )

Proof

Step Hyp Ref Expression
1 fuco11.o
 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
2 fuco11.f
 |-  ( ph -> F ( C Func D ) G )
3 fuco11.k
 |-  ( ph -> K ( D Func E ) L )
4 fuco11.u
 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )
5 fuco111x.x
 |-  ( ph -> X e. ( Base ` C ) )
6 fuco112x.y
 |-  ( ph -> Y e. ( Base ` C ) )
7 eqid
 |-  ( Base ` C ) = ( Base ` C )
8 1 2 3 4 7 fuco112
 |-  ( ph -> ( 2nd ` ( O ` U ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) )
9 simprl
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X )
10 9 fveq2d
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F ` x ) = ( F ` X ) )
11 simprr
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y )
12 11 fveq2d
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F ` y ) = ( F ` Y ) )
13 10 12 oveq12d
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( F ` x ) L ( F ` y ) ) = ( ( F ` X ) L ( F ` Y ) ) )
14 9 11 oveq12d
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x G y ) = ( X G Y ) )
15 13 14 coeq12d
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) = ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) )
16 ovexd
 |-  ( ph -> ( ( F ` X ) L ( F ` Y ) ) e. _V )
17 ovexd
 |-  ( ph -> ( X G Y ) e. _V )
18 16 17 coexd
 |-  ( ph -> ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) e. _V )
19 8 15 5 6 18 ovmpod
 |-  ( ph -> ( X ( 2nd ` ( O ` U ) ) Y ) = ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) )