Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
2 |
|
fuco11.f |
|- ( ph -> F ( C Func D ) G ) |
3 |
|
fuco11.k |
|- ( ph -> K ( D Func E ) L ) |
4 |
|
fuco11.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
5 |
|
fuco111x.x |
|- ( ph -> X e. ( Base ` C ) ) |
6 |
|
fuco112x.y |
|- ( ph -> Y e. ( Base ` C ) ) |
7 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
8 |
1 2 3 4 7
|
fuco112 |
|- ( ph -> ( 2nd ` ( O ` U ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) ) |
9 |
|
simprl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
10 |
9
|
fveq2d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F ` x ) = ( F ` X ) ) |
11 |
|
simprr |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
12 |
11
|
fveq2d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F ` y ) = ( F ` Y ) ) |
13 |
10 12
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( F ` x ) L ( F ` y ) ) = ( ( F ` X ) L ( F ` Y ) ) ) |
14 |
9 11
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x G y ) = ( X G Y ) ) |
15 |
13 14
|
coeq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) = ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) ) |
16 |
|
ovexd |
|- ( ph -> ( ( F ` X ) L ( F ` Y ) ) e. _V ) |
17 |
|
ovexd |
|- ( ph -> ( X G Y ) e. _V ) |
18 |
16 17
|
coexd |
|- ( ph -> ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) e. _V ) |
19 |
8 15 5 6 18
|
ovmpod |
|- ( ph -> ( X ( 2nd ` ( O ` U ) ) Y ) = ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) ) |