| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco11.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco11.f | 
							 |-  ( ph -> F ( C Func D ) G )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco11.k | 
							 |-  ( ph -> K ( D Func E ) L )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco11.u | 
							 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco111x.x | 
							 |-  ( ph -> X e. ( Base ` C ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco112x.y | 
							 |-  ( ph -> Y e. ( Base ` C ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fuco112xa.a | 
							 |-  ( ph -> A e. ( X ( Hom ` C ) Y ) )  | 
						
						
							| 8 | 
							
								1 2 3 4 5 6
							 | 
							fuco112x | 
							 |-  ( ph -> ( X ( 2nd ` ( O ` U ) ) Y ) = ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							fveq1d | 
							 |-  ( ph -> ( ( X ( 2nd ` ( O ` U ) ) Y ) ` A ) = ( ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) ` A ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` D ) = ( Hom ` D )  | 
						
						
							| 13 | 
							
								10 11 12 2 5 6
							 | 
							funcf2 | 
							 |-  ( ph -> ( X G Y ) : ( X ( Hom ` C ) Y ) --> ( ( F ` X ) ( Hom ` D ) ( F ` Y ) ) )  | 
						
						
							| 14 | 
							
								13 7
							 | 
							fvco3d | 
							 |-  ( ph -> ( ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) ` A ) = ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` A ) ) )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							eqtrd | 
							 |-  ( ph -> ( ( X ( 2nd ` ( O ` U ) ) Y ) ` A ) = ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` A ) ) )  |