Metamath Proof Explorer


Theorem fuco112xa

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco11.o
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
fuco11.f
|- ( ph -> F ( C Func D ) G )
fuco11.k
|- ( ph -> K ( D Func E ) L )
fuco11.u
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. )
fuco111x.x
|- ( ph -> X e. ( Base ` C ) )
fuco112x.y
|- ( ph -> Y e. ( Base ` C ) )
fuco112xa.a
|- ( ph -> A e. ( X ( Hom ` C ) Y ) )
Assertion fuco112xa
|- ( ph -> ( ( X ( 2nd ` ( O ` U ) ) Y ) ` A ) = ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` A ) ) )

Proof

Step Hyp Ref Expression
1 fuco11.o
 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
2 fuco11.f
 |-  ( ph -> F ( C Func D ) G )
3 fuco11.k
 |-  ( ph -> K ( D Func E ) L )
4 fuco11.u
 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )
5 fuco111x.x
 |-  ( ph -> X e. ( Base ` C ) )
6 fuco112x.y
 |-  ( ph -> Y e. ( Base ` C ) )
7 fuco112xa.a
 |-  ( ph -> A e. ( X ( Hom ` C ) Y ) )
8 1 2 3 4 5 6 fuco112x
 |-  ( ph -> ( X ( 2nd ` ( O ` U ) ) Y ) = ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) )
9 8 fveq1d
 |-  ( ph -> ( ( X ( 2nd ` ( O ` U ) ) Y ) ` A ) = ( ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) ` A ) )
10 eqid
 |-  ( Base ` C ) = ( Base ` C )
11 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
12 eqid
 |-  ( Hom ` D ) = ( Hom ` D )
13 10 11 12 2 5 6 funcf2
 |-  ( ph -> ( X G Y ) : ( X ( Hom ` C ) Y ) --> ( ( F ` X ) ( Hom ` D ) ( F ` Y ) ) )
14 13 7 fvco3d
 |-  ( ph -> ( ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) ` A ) = ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` A ) ) )
15 9 14 eqtrd
 |-  ( ph -> ( ( X ( 2nd ` ( O ` U ) ) Y ) ` A ) = ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` A ) ) )