Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
2 |
|
fuco11.f |
|- ( ph -> F ( C Func D ) G ) |
3 |
|
fuco11.k |
|- ( ph -> K ( D Func E ) L ) |
4 |
|
fuco11.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
5 |
|
fuco111x.x |
|- ( ph -> X e. ( Base ` C ) ) |
6 |
|
fuco112x.y |
|- ( ph -> Y e. ( Base ` C ) ) |
7 |
|
fuco112xa.a |
|- ( ph -> A e. ( X ( Hom ` C ) Y ) ) |
8 |
1 2 3 4 5 6
|
fuco112x |
|- ( ph -> ( X ( 2nd ` ( O ` U ) ) Y ) = ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) ) |
9 |
8
|
fveq1d |
|- ( ph -> ( ( X ( 2nd ` ( O ` U ) ) Y ) ` A ) = ( ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) ` A ) ) |
10 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
11 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
12 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
13 |
10 11 12 2 5 6
|
funcf2 |
|- ( ph -> ( X G Y ) : ( X ( Hom ` C ) Y ) --> ( ( F ` X ) ( Hom ` D ) ( F ` Y ) ) ) |
14 |
13 7
|
fvco3d |
|- ( ph -> ( ( ( ( F ` X ) L ( F ` Y ) ) o. ( X G Y ) ) ` A ) = ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` A ) ) ) |
15 |
9 14
|
eqtrd |
|- ( ph -> ( ( X ( 2nd ` ( O ` U ) ) Y ) ` A ) = ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` A ) ) ) |