| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco11.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco11.f | 
							 |-  ( ph -> F ( C Func D ) G )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco11.k | 
							 |-  ( ph -> K ( D Func E ) L )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco11.u | 
							 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco11id.q | 
							 |-  Q = ( C FuncCat E )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco11id.i | 
							 |-  I = ( Id ` Q )  | 
						
						
							| 7 | 
							
								
							 | 
							fuco11id.1 | 
							 |-  .1. = ( Id ` E )  | 
						
						
							| 8 | 
							
								1 2 3 4
							 | 
							fuco11cl | 
							 |-  ( ph -> ( O ` U ) e. ( C Func E ) )  | 
						
						
							| 9 | 
							
								5 6 7 8
							 | 
							fucid | 
							 |-  ( ph -> ( I ` ( O ` U ) ) = ( .1. o. ( 1st ` ( O ` U ) ) ) )  | 
						
						
							| 10 | 
							
								1 2 3 4
							 | 
							fuco111 | 
							 |-  ( ph -> ( 1st ` ( O ` U ) ) = ( K o. F ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							coeq2d | 
							 |-  ( ph -> ( .1. o. ( 1st ` ( O ` U ) ) ) = ( .1. o. ( K o. F ) ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							eqtrd | 
							 |-  ( ph -> ( I ` ( O ` U ) ) = ( .1. o. ( K o. F ) ) )  |