Metamath Proof Explorer


Theorem fuco11id

Description: The identity morphism of the mapped object. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco11.o
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
fuco11.f
|- ( ph -> F ( C Func D ) G )
fuco11.k
|- ( ph -> K ( D Func E ) L )
fuco11.u
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. )
fuco11id.q
|- Q = ( C FuncCat E )
fuco11id.i
|- I = ( Id ` Q )
fuco11id.1
|- .1. = ( Id ` E )
Assertion fuco11id
|- ( ph -> ( I ` ( O ` U ) ) = ( .1. o. ( K o. F ) ) )

Proof

Step Hyp Ref Expression
1 fuco11.o
 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
2 fuco11.f
 |-  ( ph -> F ( C Func D ) G )
3 fuco11.k
 |-  ( ph -> K ( D Func E ) L )
4 fuco11.u
 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )
5 fuco11id.q
 |-  Q = ( C FuncCat E )
6 fuco11id.i
 |-  I = ( Id ` Q )
7 fuco11id.1
 |-  .1. = ( Id ` E )
8 1 2 3 4 fuco11cl
 |-  ( ph -> ( O ` U ) e. ( C Func E ) )
9 5 6 7 8 fucid
 |-  ( ph -> ( I ` ( O ` U ) ) = ( .1. o. ( 1st ` ( O ` U ) ) ) )
10 1 2 3 4 fuco111
 |-  ( ph -> ( 1st ` ( O ` U ) ) = ( K o. F ) )
11 10 coeq2d
 |-  ( ph -> ( .1. o. ( 1st ` ( O ` U ) ) ) = ( .1. o. ( K o. F ) ) )
12 9 11 eqtrd
 |-  ( ph -> ( I ` ( O ` U ) ) = ( .1. o. ( K o. F ) ) )