Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
2 |
|
fuco11.f |
|- ( ph -> F ( C Func D ) G ) |
3 |
|
fuco11.k |
|- ( ph -> K ( D Func E ) L ) |
4 |
|
fuco11.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
5 |
|
fuco11id.q |
|- Q = ( C FuncCat E ) |
6 |
|
fuco11id.i |
|- I = ( Id ` Q ) |
7 |
|
fuco11id.1 |
|- .1. = ( Id ` E ) |
8 |
1 2 3 4
|
fuco11cl |
|- ( ph -> ( O ` U ) e. ( C Func E ) ) |
9 |
5 6 7 8
|
fucid |
|- ( ph -> ( I ` ( O ` U ) ) = ( .1. o. ( 1st ` ( O ` U ) ) ) ) |
10 |
1 2 3 4
|
fuco111 |
|- ( ph -> ( 1st ` ( O ` U ) ) = ( K o. F ) ) |
11 |
10
|
coeq2d |
|- ( ph -> ( .1. o. ( 1st ` ( O ` U ) ) ) = ( .1. o. ( K o. F ) ) ) |
12 |
9 11
|
eqtrd |
|- ( ph -> ( I ` ( O ` U ) ) = ( .1. o. ( K o. F ) ) ) |