Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco11.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
3 |
|
fuco11.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
4 |
|
fuco11.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
5 |
|
fuco11id.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐸 ) |
6 |
|
fuco11id.i |
⊢ 𝐼 = ( Id ‘ 𝑄 ) |
7 |
|
fuco11id.1 |
⊢ 1 = ( Id ‘ 𝐸 ) |
8 |
1 2 3 4
|
fuco11cl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑈 ) ∈ ( 𝐶 Func 𝐸 ) ) |
9 |
5 6 7 8
|
fucid |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) = ( 1 ∘ ( 1st ‘ ( 𝑂 ‘ 𝑈 ) ) ) ) |
10 |
1 2 3 4
|
fuco111 |
⊢ ( 𝜑 → ( 1st ‘ ( 𝑂 ‘ 𝑈 ) ) = ( 𝐾 ∘ 𝐹 ) ) |
11 |
10
|
coeq2d |
⊢ ( 𝜑 → ( 1 ∘ ( 1st ‘ ( 𝑂 ‘ 𝑈 ) ) ) = ( 1 ∘ ( 𝐾 ∘ 𝐹 ) ) ) |
12 |
9 11
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) = ( 1 ∘ ( 𝐾 ∘ 𝐹 ) ) ) |