Metamath Proof Explorer


Theorem fuco11id

Description: The identity morphism of the mapped object. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
fuco11id.q 𝑄 = ( 𝐶 FuncCat 𝐸 )
fuco11id.i 𝐼 = ( Id ‘ 𝑄 )
fuco11id.1 1 = ( Id ‘ 𝐸 )
Assertion fuco11id ( 𝜑 → ( 𝐼 ‘ ( 𝑂𝑈 ) ) = ( 1 ∘ ( 𝐾𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
3 fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
4 fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
5 fuco11id.q 𝑄 = ( 𝐶 FuncCat 𝐸 )
6 fuco11id.i 𝐼 = ( Id ‘ 𝑄 )
7 fuco11id.1 1 = ( Id ‘ 𝐸 )
8 1 2 3 4 fuco11cl ( 𝜑 → ( 𝑂𝑈 ) ∈ ( 𝐶 Func 𝐸 ) )
9 5 6 7 8 fucid ( 𝜑 → ( 𝐼 ‘ ( 𝑂𝑈 ) ) = ( 1 ∘ ( 1st ‘ ( 𝑂𝑈 ) ) ) )
10 1 2 3 4 fuco111 ( 𝜑 → ( 1st ‘ ( 𝑂𝑈 ) ) = ( 𝐾𝐹 ) )
11 10 coeq2d ( 𝜑 → ( 1 ∘ ( 1st ‘ ( 𝑂𝑈 ) ) ) = ( 1 ∘ ( 𝐾𝐹 ) ) )
12 9 11 eqtrd ( 𝜑 → ( 𝐼 ‘ ( 𝑂𝑈 ) ) = ( 1 ∘ ( 𝐾𝐹 ) ) )