| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco11.o | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  〈 𝑂 ,  𝑃 〉 )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco11.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco11.k | 
							⊢ ( 𝜑  →  𝐾 ( 𝐷  Func  𝐸 ) 𝐿 )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco11.u | 
							⊢ ( 𝜑  →  𝑈  =  〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco11id.q | 
							⊢ 𝑄  =  ( 𝐶  FuncCat  𝐸 )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco11id.i | 
							⊢ 𝐼  =  ( Id ‘ 𝑄 )  | 
						
						
							| 7 | 
							
								
							 | 
							fuco11id.1 | 
							⊢  1   =  ( Id ‘ 𝐸 )  | 
						
						
							| 8 | 
							
								
							 | 
							fuco11idx.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7
							 | 
							fuco11id | 
							⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) )  =  (  1   ∘  ( 𝐾  ∘  𝐹 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							coass | 
							⊢ ( (  1   ∘  𝐾 )  ∘  𝐹 )  =  (  1   ∘  ( 𝐾  ∘  𝐹 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtr4di | 
							⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) )  =  ( (  1   ∘  𝐾 )  ∘  𝐹 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq1d | 
							⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) ‘ 𝑋 )  =  ( ( (  1   ∘  𝐾 )  ∘  𝐹 ) ‘ 𝑋 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 )  | 
						
						
							| 15 | 
							
								13 14 2
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 16 | 
							
								15 8
							 | 
							fvco3d | 
							⊢ ( 𝜑  →  ( ( (  1   ∘  𝐾 )  ∘  𝐹 ) ‘ 𝑋 )  =  ( (  1   ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐸 )  =  ( Base ‘ 𝐸 )  | 
						
						
							| 18 | 
							
								14 17 3
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  𝐾 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )  | 
						
						
							| 19 | 
							
								15 8
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐷 ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							fvco3d | 
							⊢ ( 𝜑  →  ( (  1   ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑋 ) )  =  (  1  ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) )  | 
						
						
							| 21 | 
							
								12 16 20
							 | 
							3eqtrd | 
							⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) ‘ 𝑋 )  =  (  1  ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) )  |