| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco11.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
| 2 |
|
fuco11.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 3 |
|
fuco11.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 4 |
|
fuco11.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
| 5 |
|
fuco11id.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐸 ) |
| 6 |
|
fuco11id.i |
⊢ 𝐼 = ( Id ‘ 𝑄 ) |
| 7 |
|
fuco11id.1 |
⊢ 1 = ( Id ‘ 𝐸 ) |
| 8 |
|
fuco11idx.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 9 |
1 2 3 4 5 6 7
|
fuco11id |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) = ( 1 ∘ ( 𝐾 ∘ 𝐹 ) ) ) |
| 10 |
|
coass |
⊢ ( ( 1 ∘ 𝐾 ) ∘ 𝐹 ) = ( 1 ∘ ( 𝐾 ∘ 𝐹 ) ) |
| 11 |
9 10
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) = ( ( 1 ∘ 𝐾 ) ∘ 𝐹 ) ) |
| 12 |
11
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) ‘ 𝑋 ) = ( ( ( 1 ∘ 𝐾 ) ∘ 𝐹 ) ‘ 𝑋 ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 15 |
13 14 2
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 16 |
15 8
|
fvco3d |
⊢ ( 𝜑 → ( ( ( 1 ∘ 𝐾 ) ∘ 𝐹 ) ‘ 𝑋 ) = ( ( 1 ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 18 |
14 17 3
|
funcf1 |
⊢ ( 𝜑 → 𝐾 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 19 |
15 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 20 |
18 19
|
fvco3d |
⊢ ( 𝜑 → ( ( 1 ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 1 ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 21 |
12 16 20
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) ‘ 𝑋 ) = ( 1 ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |