Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco11.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
3 |
|
fuco11.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
4 |
|
fuco11.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
5 |
|
fuco11id.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐸 ) |
6 |
|
fuco11id.i |
⊢ 𝐼 = ( Id ‘ 𝑄 ) |
7 |
|
fuco11id.1 |
⊢ 1 = ( Id ‘ 𝐸 ) |
8 |
|
fuco11idx.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
9 |
1 2 3 4 5 6 7
|
fuco11id |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) = ( 1 ∘ ( 𝐾 ∘ 𝐹 ) ) ) |
10 |
|
coass |
⊢ ( ( 1 ∘ 𝐾 ) ∘ 𝐹 ) = ( 1 ∘ ( 𝐾 ∘ 𝐹 ) ) |
11 |
9 10
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) = ( ( 1 ∘ 𝐾 ) ∘ 𝐹 ) ) |
12 |
11
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) ‘ 𝑋 ) = ( ( ( 1 ∘ 𝐾 ) ∘ 𝐹 ) ‘ 𝑋 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
15 |
13 14 2
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
16 |
15 8
|
fvco3d |
⊢ ( 𝜑 → ( ( ( 1 ∘ 𝐾 ) ∘ 𝐹 ) ‘ 𝑋 ) = ( ( 1 ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
18 |
14 17 3
|
funcf1 |
⊢ ( 𝜑 → 𝐾 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
19 |
15 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
20 |
18 19
|
fvco3d |
⊢ ( 𝜑 → ( ( 1 ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 1 ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
21 |
12 16 20
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) ‘ 𝑋 ) = ( 1 ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |