Metamath Proof Explorer


Theorem fuco11idx

Description: The identity morphism of the mapped object. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
fuco11id.q 𝑄 = ( 𝐶 FuncCat 𝐸 )
fuco11id.i 𝐼 = ( Id ‘ 𝑄 )
fuco11id.1 1 = ( Id ‘ 𝐸 )
fuco11idx.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
Assertion fuco11idx ( 𝜑 → ( ( 𝐼 ‘ ( 𝑂𝑈 ) ) ‘ 𝑋 ) = ( 1 ‘ ( 𝐾 ‘ ( 𝐹𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
3 fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
4 fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
5 fuco11id.q 𝑄 = ( 𝐶 FuncCat 𝐸 )
6 fuco11id.i 𝐼 = ( Id ‘ 𝑄 )
7 fuco11id.1 1 = ( Id ‘ 𝐸 )
8 fuco11idx.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
9 1 2 3 4 5 6 7 fuco11id ( 𝜑 → ( 𝐼 ‘ ( 𝑂𝑈 ) ) = ( 1 ∘ ( 𝐾𝐹 ) ) )
10 coass ( ( 1𝐾 ) ∘ 𝐹 ) = ( 1 ∘ ( 𝐾𝐹 ) )
11 9 10 eqtr4di ( 𝜑 → ( 𝐼 ‘ ( 𝑂𝑈 ) ) = ( ( 1𝐾 ) ∘ 𝐹 ) )
12 11 fveq1d ( 𝜑 → ( ( 𝐼 ‘ ( 𝑂𝑈 ) ) ‘ 𝑋 ) = ( ( ( 1𝐾 ) ∘ 𝐹 ) ‘ 𝑋 ) )
13 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
14 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
15 13 14 2 funcf1 ( 𝜑𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
16 15 8 fvco3d ( 𝜑 → ( ( ( 1𝐾 ) ∘ 𝐹 ) ‘ 𝑋 ) = ( ( 1𝐾 ) ‘ ( 𝐹𝑋 ) ) )
17 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
18 14 17 3 funcf1 ( 𝜑𝐾 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
19 15 8 ffvelcdmd ( 𝜑 → ( 𝐹𝑋 ) ∈ ( Base ‘ 𝐷 ) )
20 18 19 fvco3d ( 𝜑 → ( ( 1𝐾 ) ‘ ( 𝐹𝑋 ) ) = ( 1 ‘ ( 𝐾 ‘ ( 𝐹𝑋 ) ) ) )
21 12 16 20 3eqtrd ( 𝜑 → ( ( 𝐼 ‘ ( 𝑂𝑈 ) ) ‘ 𝑋 ) = ( 1 ‘ ( 𝐾 ‘ ( 𝐹𝑋 ) ) ) )