Metamath Proof Explorer


Theorem fuco11idx

Description: The identity morphism of the mapped object. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco11.o
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
fuco11.f
|- ( ph -> F ( C Func D ) G )
fuco11.k
|- ( ph -> K ( D Func E ) L )
fuco11.u
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. )
fuco11id.q
|- Q = ( C FuncCat E )
fuco11id.i
|- I = ( Id ` Q )
fuco11id.1
|- .1. = ( Id ` E )
fuco11idx.x
|- ( ph -> X e. ( Base ` C ) )
Assertion fuco11idx
|- ( ph -> ( ( I ` ( O ` U ) ) ` X ) = ( .1. ` ( K ` ( F ` X ) ) ) )

Proof

Step Hyp Ref Expression
1 fuco11.o
 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
2 fuco11.f
 |-  ( ph -> F ( C Func D ) G )
3 fuco11.k
 |-  ( ph -> K ( D Func E ) L )
4 fuco11.u
 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )
5 fuco11id.q
 |-  Q = ( C FuncCat E )
6 fuco11id.i
 |-  I = ( Id ` Q )
7 fuco11id.1
 |-  .1. = ( Id ` E )
8 fuco11idx.x
 |-  ( ph -> X e. ( Base ` C ) )
9 1 2 3 4 5 6 7 fuco11id
 |-  ( ph -> ( I ` ( O ` U ) ) = ( .1. o. ( K o. F ) ) )
10 coass
 |-  ( ( .1. o. K ) o. F ) = ( .1. o. ( K o. F ) )
11 9 10 eqtr4di
 |-  ( ph -> ( I ` ( O ` U ) ) = ( ( .1. o. K ) o. F ) )
12 11 fveq1d
 |-  ( ph -> ( ( I ` ( O ` U ) ) ` X ) = ( ( ( .1. o. K ) o. F ) ` X ) )
13 eqid
 |-  ( Base ` C ) = ( Base ` C )
14 eqid
 |-  ( Base ` D ) = ( Base ` D )
15 13 14 2 funcf1
 |-  ( ph -> F : ( Base ` C ) --> ( Base ` D ) )
16 15 8 fvco3d
 |-  ( ph -> ( ( ( .1. o. K ) o. F ) ` X ) = ( ( .1. o. K ) ` ( F ` X ) ) )
17 eqid
 |-  ( Base ` E ) = ( Base ` E )
18 14 17 3 funcf1
 |-  ( ph -> K : ( Base ` D ) --> ( Base ` E ) )
19 15 8 ffvelcdmd
 |-  ( ph -> ( F ` X ) e. ( Base ` D ) )
20 18 19 fvco3d
 |-  ( ph -> ( ( .1. o. K ) ` ( F ` X ) ) = ( .1. ` ( K ` ( F ` X ) ) ) )
21 12 16 20 3eqtrd
 |-  ( ph -> ( ( I ` ( O ` U ) ) ` X ) = ( .1. ` ( K ` ( F ` X ) ) ) )