| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco11.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
| 2 |
|
fuco11.f |
|- ( ph -> F ( C Func D ) G ) |
| 3 |
|
fuco11.k |
|- ( ph -> K ( D Func E ) L ) |
| 4 |
|
fuco11.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
| 5 |
|
fuco11id.q |
|- Q = ( C FuncCat E ) |
| 6 |
|
fuco11id.i |
|- I = ( Id ` Q ) |
| 7 |
|
fuco11id.1 |
|- .1. = ( Id ` E ) |
| 8 |
|
fuco11idx.x |
|- ( ph -> X e. ( Base ` C ) ) |
| 9 |
1 2 3 4 5 6 7
|
fuco11id |
|- ( ph -> ( I ` ( O ` U ) ) = ( .1. o. ( K o. F ) ) ) |
| 10 |
|
coass |
|- ( ( .1. o. K ) o. F ) = ( .1. o. ( K o. F ) ) |
| 11 |
9 10
|
eqtr4di |
|- ( ph -> ( I ` ( O ` U ) ) = ( ( .1. o. K ) o. F ) ) |
| 12 |
11
|
fveq1d |
|- ( ph -> ( ( I ` ( O ` U ) ) ` X ) = ( ( ( .1. o. K ) o. F ) ` X ) ) |
| 13 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 14 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 15 |
13 14 2
|
funcf1 |
|- ( ph -> F : ( Base ` C ) --> ( Base ` D ) ) |
| 16 |
15 8
|
fvco3d |
|- ( ph -> ( ( ( .1. o. K ) o. F ) ` X ) = ( ( .1. o. K ) ` ( F ` X ) ) ) |
| 17 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 18 |
14 17 3
|
funcf1 |
|- ( ph -> K : ( Base ` D ) --> ( Base ` E ) ) |
| 19 |
15 8
|
ffvelcdmd |
|- ( ph -> ( F ` X ) e. ( Base ` D ) ) |
| 20 |
18 19
|
fvco3d |
|- ( ph -> ( ( .1. o. K ) ` ( F ` X ) ) = ( .1. ` ( K ` ( F ` X ) ) ) ) |
| 21 |
12 16 20
|
3eqtrd |
|- ( ph -> ( ( I ` ( O ` U ) ) ` X ) = ( .1. ` ( K ` ( F ` X ) ) ) ) |