| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco11.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco11.f | 
							 |-  ( ph -> F ( C Func D ) G )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco11.k | 
							 |-  ( ph -> K ( D Func E ) L )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco11.u | 
							 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco11id.q | 
							 |-  Q = ( C FuncCat E )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco11id.i | 
							 |-  I = ( Id ` Q )  | 
						
						
							| 7 | 
							
								
							 | 
							fuco11id.1 | 
							 |-  .1. = ( Id ` E )  | 
						
						
							| 8 | 
							
								
							 | 
							fuco11idx.x | 
							 |-  ( ph -> X e. ( Base ` C ) )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7
							 | 
							fuco11id | 
							 |-  ( ph -> ( I ` ( O ` U ) ) = ( .1. o. ( K o. F ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							coass | 
							 |-  ( ( .1. o. K ) o. F ) = ( .1. o. ( K o. F ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtr4di | 
							 |-  ( ph -> ( I ` ( O ` U ) ) = ( ( .1. o. K ) o. F ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq1d | 
							 |-  ( ph -> ( ( I ` ( O ` U ) ) ` X ) = ( ( ( .1. o. K ) o. F ) ` X ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` D ) = ( Base ` D )  | 
						
						
							| 15 | 
							
								13 14 2
							 | 
							funcf1 | 
							 |-  ( ph -> F : ( Base ` C ) --> ( Base ` D ) )  | 
						
						
							| 16 | 
							
								15 8
							 | 
							fvco3d | 
							 |-  ( ph -> ( ( ( .1. o. K ) o. F ) ` X ) = ( ( .1. o. K ) ` ( F ` X ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` E ) = ( Base ` E )  | 
						
						
							| 18 | 
							
								14 17 3
							 | 
							funcf1 | 
							 |-  ( ph -> K : ( Base ` D ) --> ( Base ` E ) )  | 
						
						
							| 19 | 
							
								15 8
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( F ` X ) e. ( Base ` D ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							fvco3d | 
							 |-  ( ph -> ( ( .1. o. K ) ` ( F ` X ) ) = ( .1. ` ( K ` ( F ` X ) ) ) )  | 
						
						
							| 21 | 
							
								12 16 20
							 | 
							3eqtrd | 
							 |-  ( ph -> ( ( I ` ( O ` U ) ) ` X ) = ( .1. ` ( K ` ( F ` X ) ) ) )  |