Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
2 |
|
fuco11.f |
|- ( ph -> F ( C Func D ) G ) |
3 |
|
fuco11.k |
|- ( ph -> K ( D Func E ) L ) |
4 |
|
fuco11.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
5 |
|
fuco21.m |
|- ( ph -> M ( C Func D ) N ) |
6 |
|
fuco21.r |
|- ( ph -> R ( D Func E ) S ) |
7 |
|
fuco21.v |
|- ( ph -> V = <. <. R , S >. , <. M , N >. >. ) |
8 |
2
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
9 |
3
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
10 |
3
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
11 |
|
eqidd |
|- ( ph -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
12 |
8 9 10 1 11
|
fuco2 |
|- ( ph -> P = ( u e. ( ( D Func E ) X. ( C Func D ) ) , v e. ( ( D Func E ) X. ( C Func D ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) ) |
13 |
|
fvexd |
|- ( ( ph /\ ( u = U /\ v = V ) ) -> ( 1st ` ( 2nd ` u ) ) e. _V ) |
14 |
|
simprl |
|- ( ( ph /\ ( u = U /\ v = V ) ) -> u = U ) |
15 |
4
|
adantr |
|- ( ( ph /\ ( u = U /\ v = V ) ) -> U = <. <. K , L >. , <. F , G >. >. ) |
16 |
14 15
|
eqtrd |
|- ( ( ph /\ ( u = U /\ v = V ) ) -> u = <. <. K , L >. , <. F , G >. >. ) |
17 |
16
|
fveq2d |
|- ( ( ph /\ ( u = U /\ v = V ) ) -> ( 2nd ` u ) = ( 2nd ` <. <. K , L >. , <. F , G >. >. ) ) |
18 |
17
|
fveq2d |
|- ( ( ph /\ ( u = U /\ v = V ) ) -> ( 1st ` ( 2nd ` u ) ) = ( 1st ` ( 2nd ` <. <. K , L >. , <. F , G >. >. ) ) ) |
19 |
|
opex |
|- <. K , L >. e. _V |
20 |
|
opex |
|- <. F , G >. e. _V |
21 |
19 20
|
op2nd |
|- ( 2nd ` <. <. K , L >. , <. F , G >. >. ) = <. F , G >. |
22 |
21
|
fveq2i |
|- ( 1st ` ( 2nd ` <. <. K , L >. , <. F , G >. >. ) ) = ( 1st ` <. F , G >. ) |
23 |
|
relfunc |
|- Rel ( C Func D ) |
24 |
23
|
brrelex1i |
|- ( F ( C Func D ) G -> F e. _V ) |
25 |
2 24
|
syl |
|- ( ph -> F e. _V ) |
26 |
23
|
brrelex2i |
|- ( F ( C Func D ) G -> G e. _V ) |
27 |
2 26
|
syl |
|- ( ph -> G e. _V ) |
28 |
|
op1stg |
|- ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F ) |
29 |
25 27 28
|
syl2anc |
|- ( ph -> ( 1st ` <. F , G >. ) = F ) |
30 |
22 29
|
eqtrid |
|- ( ph -> ( 1st ` ( 2nd ` <. <. K , L >. , <. F , G >. >. ) ) = F ) |
31 |
30
|
adantr |
|- ( ( ph /\ ( u = U /\ v = V ) ) -> ( 1st ` ( 2nd ` <. <. K , L >. , <. F , G >. >. ) ) = F ) |
32 |
18 31
|
eqtrd |
|- ( ( ph /\ ( u = U /\ v = V ) ) -> ( 1st ` ( 2nd ` u ) ) = F ) |
33 |
|
fvexd |
|- ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> ( 1st ` ( 1st ` u ) ) e. _V ) |
34 |
14
|
adantr |
|- ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> u = U ) |
35 |
15
|
adantr |
|- ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> U = <. <. K , L >. , <. F , G >. >. ) |
36 |
34 35
|
eqtrd |
|- ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> u = <. <. K , L >. , <. F , G >. >. ) |
37 |
36
|
fveq2d |
|- ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> ( 1st ` u ) = ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) |
38 |
37
|
fveq2d |
|- ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> ( 1st ` ( 1st ` u ) ) = ( 1st ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) ) |
39 |
19 20
|
op1st |
|- ( 1st ` <. <. K , L >. , <. F , G >. >. ) = <. K , L >. |
40 |
39
|
fveq2i |
|- ( 1st ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = ( 1st ` <. K , L >. ) |
41 |
|
relfunc |
|- Rel ( D Func E ) |
42 |
41
|
brrelex1i |
|- ( K ( D Func E ) L -> K e. _V ) |
43 |
3 42
|
syl |
|- ( ph -> K e. _V ) |
44 |
41
|
brrelex2i |
|- ( K ( D Func E ) L -> L e. _V ) |
45 |
3 44
|
syl |
|- ( ph -> L e. _V ) |
46 |
|
op1stg |
|- ( ( K e. _V /\ L e. _V ) -> ( 1st ` <. K , L >. ) = K ) |
47 |
43 45 46
|
syl2anc |
|- ( ph -> ( 1st ` <. K , L >. ) = K ) |
48 |
40 47
|
eqtrid |
|- ( ph -> ( 1st ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = K ) |
49 |
48
|
ad2antrr |
|- ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> ( 1st ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = K ) |
50 |
38 49
|
eqtrd |
|- ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> ( 1st ` ( 1st ` u ) ) = K ) |
51 |
|
fvexd |
|- ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> ( 2nd ` ( 1st ` u ) ) e. _V ) |
52 |
34
|
adantr |
|- ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> u = U ) |
53 |
35
|
adantr |
|- ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> U = <. <. K , L >. , <. F , G >. >. ) |
54 |
52 53
|
eqtrd |
|- ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> u = <. <. K , L >. , <. F , G >. >. ) |
55 |
54
|
fveq2d |
|- ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> ( 1st ` u ) = ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) |
56 |
55
|
fveq2d |
|- ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> ( 2nd ` ( 1st ` u ) ) = ( 2nd ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) ) |
57 |
39
|
fveq2i |
|- ( 2nd ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = ( 2nd ` <. K , L >. ) |
58 |
|
op2ndg |
|- ( ( K e. _V /\ L e. _V ) -> ( 2nd ` <. K , L >. ) = L ) |
59 |
43 45 58
|
syl2anc |
|- ( ph -> ( 2nd ` <. K , L >. ) = L ) |
60 |
57 59
|
eqtrid |
|- ( ph -> ( 2nd ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = L ) |
61 |
60
|
ad3antrrr |
|- ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> ( 2nd ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = L ) |
62 |
56 61
|
eqtrd |
|- ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> ( 2nd ` ( 1st ` u ) ) = L ) |
63 |
|
fvexd |
|- ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( 1st ` ( 2nd ` v ) ) e. _V ) |
64 |
|
simp-4r |
|- ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( u = U /\ v = V ) ) |
65 |
64
|
simprd |
|- ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> v = V ) |
66 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> V = <. <. R , S >. , <. M , N >. >. ) |
67 |
65 66
|
eqtrd |
|- ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> v = <. <. R , S >. , <. M , N >. >. ) |
68 |
67
|
fveq2d |
|- ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( 2nd ` v ) = ( 2nd ` <. <. R , S >. , <. M , N >. >. ) ) |
69 |
68
|
fveq2d |
|- ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( 1st ` ( 2nd ` v ) ) = ( 1st ` ( 2nd ` <. <. R , S >. , <. M , N >. >. ) ) ) |
70 |
|
opex |
|- <. R , S >. e. _V |
71 |
|
opex |
|- <. M , N >. e. _V |
72 |
70 71
|
op2nd |
|- ( 2nd ` <. <. R , S >. , <. M , N >. >. ) = <. M , N >. |
73 |
72
|
fveq2i |
|- ( 1st ` ( 2nd ` <. <. R , S >. , <. M , N >. >. ) ) = ( 1st ` <. M , N >. ) |
74 |
23
|
brrelex1i |
|- ( M ( C Func D ) N -> M e. _V ) |
75 |
5 74
|
syl |
|- ( ph -> M e. _V ) |
76 |
23
|
brrelex2i |
|- ( M ( C Func D ) N -> N e. _V ) |
77 |
5 76
|
syl |
|- ( ph -> N e. _V ) |
78 |
|
op1stg |
|- ( ( M e. _V /\ N e. _V ) -> ( 1st ` <. M , N >. ) = M ) |
79 |
75 77 78
|
syl2anc |
|- ( ph -> ( 1st ` <. M , N >. ) = M ) |
80 |
73 79
|
eqtrid |
|- ( ph -> ( 1st ` ( 2nd ` <. <. R , S >. , <. M , N >. >. ) ) = M ) |
81 |
80
|
ad4antr |
|- ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( 1st ` ( 2nd ` <. <. R , S >. , <. M , N >. >. ) ) = M ) |
82 |
69 81
|
eqtrd |
|- ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( 1st ` ( 2nd ` v ) ) = M ) |
83 |
|
fvexd |
|- ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> ( 1st ` ( 1st ` v ) ) e. _V ) |
84 |
65
|
adantr |
|- ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> v = V ) |
85 |
66
|
adantr |
|- ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> V = <. <. R , S >. , <. M , N >. >. ) |
86 |
84 85
|
eqtrd |
|- ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> v = <. <. R , S >. , <. M , N >. >. ) |
87 |
86
|
fveq2d |
|- ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> ( 1st ` v ) = ( 1st ` <. <. R , S >. , <. M , N >. >. ) ) |
88 |
87
|
fveq2d |
|- ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> ( 1st ` ( 1st ` v ) ) = ( 1st ` ( 1st ` <. <. R , S >. , <. M , N >. >. ) ) ) |
89 |
70 71
|
op1st |
|- ( 1st ` <. <. R , S >. , <. M , N >. >. ) = <. R , S >. |
90 |
89
|
fveq2i |
|- ( 1st ` ( 1st ` <. <. R , S >. , <. M , N >. >. ) ) = ( 1st ` <. R , S >. ) |
91 |
41
|
brrelex1i |
|- ( R ( D Func E ) S -> R e. _V ) |
92 |
6 91
|
syl |
|- ( ph -> R e. _V ) |
93 |
41
|
brrelex2i |
|- ( R ( D Func E ) S -> S e. _V ) |
94 |
6 93
|
syl |
|- ( ph -> S e. _V ) |
95 |
|
op1stg |
|- ( ( R e. _V /\ S e. _V ) -> ( 1st ` <. R , S >. ) = R ) |
96 |
92 94 95
|
syl2anc |
|- ( ph -> ( 1st ` <. R , S >. ) = R ) |
97 |
90 96
|
eqtrid |
|- ( ph -> ( 1st ` ( 1st ` <. <. R , S >. , <. M , N >. >. ) ) = R ) |
98 |
97
|
ad5antr |
|- ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> ( 1st ` ( 1st ` <. <. R , S >. , <. M , N >. >. ) ) = R ) |
99 |
88 98
|
eqtrd |
|- ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> ( 1st ` ( 1st ` v ) ) = R ) |
100 |
55
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 1st ` u ) = ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) |
101 |
100 39
|
eqtrdi |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 1st ` u ) = <. K , L >. ) |
102 |
87
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 1st ` v ) = ( 1st ` <. <. R , S >. , <. M , N >. >. ) ) |
103 |
102 89
|
eqtrdi |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 1st ` v ) = <. R , S >. ) |
104 |
101 103
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) = ( <. K , L >. ( D Nat E ) <. R , S >. ) ) |
105 |
17
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 2nd ` u ) = ( 2nd ` <. <. K , L >. , <. F , G >. >. ) ) |
106 |
105 21
|
eqtrdi |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 2nd ` u ) = <. F , G >. ) |
107 |
68
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 2nd ` v ) = ( 2nd ` <. <. R , S >. , <. M , N >. >. ) ) |
108 |
107 72
|
eqtrdi |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 2nd ` v ) = <. M , N >. ) |
109 |
106 108
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) = ( <. F , G >. ( C Nat D ) <. M , N >. ) ) |
110 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> k = K ) |
111 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> f = F ) |
112 |
111
|
fveq1d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( f ` x ) = ( F ` x ) ) |
113 |
110 112
|
fveq12d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( k ` ( f ` x ) ) = ( K ` ( F ` x ) ) ) |
114 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> m = M ) |
115 |
114
|
fveq1d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( m ` x ) = ( M ` x ) ) |
116 |
110 115
|
fveq12d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( k ` ( m ` x ) ) = ( K ` ( M ` x ) ) ) |
117 |
113 116
|
opeq12d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. = <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ) |
118 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> r = R ) |
119 |
118 115
|
fveq12d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( r ` ( m ` x ) ) = ( R ` ( M ` x ) ) ) |
120 |
117 119
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) = ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ) |
121 |
115
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( b ` ( m ` x ) ) = ( b ` ( M ` x ) ) ) |
122 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> l = L ) |
123 |
122 112 115
|
oveq123d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( ( f ` x ) l ( m ` x ) ) = ( ( F ` x ) L ( M ` x ) ) ) |
124 |
123
|
fveq1d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) = ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) |
125 |
120 121 124
|
oveq123d |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) = ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) |
126 |
125
|
mpteq2dv |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) = ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) |
127 |
104 109 126
|
mpoeq123dv |
|- ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) ) |
128 |
83 99 127
|
csbied2 |
|- ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) ) |
129 |
63 82 128
|
csbied2 |
|- ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) ) |
130 |
51 62 129
|
csbied2 |
|- ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) ) |
131 |
33 50 130
|
csbied2 |
|- ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) ) |
132 |
13 32 131
|
csbied2 |
|- ( ( ph /\ ( u = U /\ v = V ) ) -> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) ) |
133 |
11 4 3 2
|
fuco2eld |
|- ( ph -> U e. ( ( D Func E ) X. ( C Func D ) ) ) |
134 |
11 7 6 5
|
fuco2eld |
|- ( ph -> V e. ( ( D Func E ) X. ( C Func D ) ) ) |
135 |
|
ovex |
|- ( <. K , L >. ( D Nat E ) <. R , S >. ) e. _V |
136 |
|
ovex |
|- ( <. F , G >. ( C Nat D ) <. M , N >. ) e. _V |
137 |
135 136
|
mpoex |
|- ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) e. _V |
138 |
137
|
a1i |
|- ( ph -> ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) e. _V ) |
139 |
12 132 133 134 138
|
ovmpod |
|- ( ph -> ( U P V ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) ) |