| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco11.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco11.f | 
							 |-  ( ph -> F ( C Func D ) G )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco11.k | 
							 |-  ( ph -> K ( D Func E ) L )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco11.u | 
							 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco21.m | 
							 |-  ( ph -> M ( C Func D ) N )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco21.r | 
							 |-  ( ph -> R ( D Func E ) S )  | 
						
						
							| 7 | 
							
								
							 | 
							fuco21.v | 
							 |-  ( ph -> V = <. <. R , S >. , <. M , N >. >. )  | 
						
						
							| 8 | 
							
								2
							 | 
							funcrcl2 | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 9 | 
							
								3
							 | 
							funcrcl2 | 
							 |-  ( ph -> D e. Cat )  | 
						
						
							| 10 | 
							
								3
							 | 
							funcrcl3 | 
							 |-  ( ph -> E e. Cat )  | 
						
						
							| 11 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 12 | 
							
								8 9 10 1 11
							 | 
							fuco2 | 
							 |-  ( ph -> P = ( u e. ( ( D Func E ) X. ( C Func D ) ) , v e. ( ( D Func E ) X. ( C Func D ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ph /\ ( u = U /\ v = V ) ) -> ( 1st ` ( 2nd ` u ) ) e. _V )  | 
						
						
							| 14 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( u = U /\ v = V ) ) -> u = U )  | 
						
						
							| 15 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ ( u = U /\ v = V ) ) -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtrd | 
							 |-  ( ( ph /\ ( u = U /\ v = V ) ) -> u = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 17 | 
							
								16
							 | 
							fveq2d | 
							 |-  ( ( ph /\ ( u = U /\ v = V ) ) -> ( 2nd ` u ) = ( 2nd ` <. <. K , L >. , <. F , G >. >. ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							fveq2d | 
							 |-  ( ( ph /\ ( u = U /\ v = V ) ) -> ( 1st ` ( 2nd ` u ) ) = ( 1st ` ( 2nd ` <. <. K , L >. , <. F , G >. >. ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							opex | 
							 |-  <. K , L >. e. _V  | 
						
						
							| 20 | 
							
								
							 | 
							opex | 
							 |-  <. F , G >. e. _V  | 
						
						
							| 21 | 
							
								19 20
							 | 
							op2nd | 
							 |-  ( 2nd ` <. <. K , L >. , <. F , G >. >. ) = <. F , G >.  | 
						
						
							| 22 | 
							
								21
							 | 
							fveq2i | 
							 |-  ( 1st ` ( 2nd ` <. <. K , L >. , <. F , G >. >. ) ) = ( 1st ` <. F , G >. )  | 
						
						
							| 23 | 
							
								
							 | 
							relfunc | 
							 |-  Rel ( C Func D )  | 
						
						
							| 24 | 
							
								23
							 | 
							brrelex1i | 
							 |-  ( F ( C Func D ) G -> F e. _V )  | 
						
						
							| 25 | 
							
								2 24
							 | 
							syl | 
							 |-  ( ph -> F e. _V )  | 
						
						
							| 26 | 
							
								23
							 | 
							brrelex2i | 
							 |-  ( F ( C Func D ) G -> G e. _V )  | 
						
						
							| 27 | 
							
								2 26
							 | 
							syl | 
							 |-  ( ph -> G e. _V )  | 
						
						
							| 28 | 
							
								
							 | 
							op1stg | 
							 |-  ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F )  | 
						
						
							| 29 | 
							
								25 27 28
							 | 
							syl2anc | 
							 |-  ( ph -> ( 1st ` <. F , G >. ) = F )  | 
						
						
							| 30 | 
							
								22 29
							 | 
							eqtrid | 
							 |-  ( ph -> ( 1st ` ( 2nd ` <. <. K , L >. , <. F , G >. >. ) ) = F )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( ph /\ ( u = U /\ v = V ) ) -> ( 1st ` ( 2nd ` <. <. K , L >. , <. F , G >. >. ) ) = F )  | 
						
						
							| 32 | 
							
								18 31
							 | 
							eqtrd | 
							 |-  ( ( ph /\ ( u = U /\ v = V ) ) -> ( 1st ` ( 2nd ` u ) ) = F )  | 
						
						
							| 33 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> ( 1st ` ( 1st ` u ) ) e. _V )  | 
						
						
							| 34 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> u = U )  | 
						
						
							| 35 | 
							
								15
							 | 
							adantr | 
							 |-  ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> u = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 37 | 
							
								36
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> ( 1st ` u ) = ( 1st ` <. <. K , L >. , <. F , G >. >. ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> ( 1st ` ( 1st ` u ) ) = ( 1st ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) )  | 
						
						
							| 39 | 
							
								19 20
							 | 
							op1st | 
							 |-  ( 1st ` <. <. K , L >. , <. F , G >. >. ) = <. K , L >.  | 
						
						
							| 40 | 
							
								39
							 | 
							fveq2i | 
							 |-  ( 1st ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = ( 1st ` <. K , L >. )  | 
						
						
							| 41 | 
							
								
							 | 
							relfunc | 
							 |-  Rel ( D Func E )  | 
						
						
							| 42 | 
							
								41
							 | 
							brrelex1i | 
							 |-  ( K ( D Func E ) L -> K e. _V )  | 
						
						
							| 43 | 
							
								3 42
							 | 
							syl | 
							 |-  ( ph -> K e. _V )  | 
						
						
							| 44 | 
							
								41
							 | 
							brrelex2i | 
							 |-  ( K ( D Func E ) L -> L e. _V )  | 
						
						
							| 45 | 
							
								3 44
							 | 
							syl | 
							 |-  ( ph -> L e. _V )  | 
						
						
							| 46 | 
							
								
							 | 
							op1stg | 
							 |-  ( ( K e. _V /\ L e. _V ) -> ( 1st ` <. K , L >. ) = K )  | 
						
						
							| 47 | 
							
								43 45 46
							 | 
							syl2anc | 
							 |-  ( ph -> ( 1st ` <. K , L >. ) = K )  | 
						
						
							| 48 | 
							
								40 47
							 | 
							eqtrid | 
							 |-  ( ph -> ( 1st ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = K )  | 
						
						
							| 49 | 
							
								48
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> ( 1st ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = K )  | 
						
						
							| 50 | 
							
								38 49
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> ( 1st ` ( 1st ` u ) ) = K )  | 
						
						
							| 51 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> ( 2nd ` ( 1st ` u ) ) e. _V )  | 
						
						
							| 52 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> u = U )  | 
						
						
							| 53 | 
							
								35
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							eqtrd | 
							 |-  ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> u = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 55 | 
							
								54
							 | 
							fveq2d | 
							 |-  ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> ( 1st ` u ) = ( 1st ` <. <. K , L >. , <. F , G >. >. ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							fveq2d | 
							 |-  ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> ( 2nd ` ( 1st ` u ) ) = ( 2nd ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) )  | 
						
						
							| 57 | 
							
								39
							 | 
							fveq2i | 
							 |-  ( 2nd ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = ( 2nd ` <. K , L >. )  | 
						
						
							| 58 | 
							
								
							 | 
							op2ndg | 
							 |-  ( ( K e. _V /\ L e. _V ) -> ( 2nd ` <. K , L >. ) = L )  | 
						
						
							| 59 | 
							
								43 45 58
							 | 
							syl2anc | 
							 |-  ( ph -> ( 2nd ` <. K , L >. ) = L )  | 
						
						
							| 60 | 
							
								57 59
							 | 
							eqtrid | 
							 |-  ( ph -> ( 2nd ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = L )  | 
						
						
							| 61 | 
							
								60
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> ( 2nd ` ( 1st ` <. <. K , L >. , <. F , G >. >. ) ) = L )  | 
						
						
							| 62 | 
							
								56 61
							 | 
							eqtrd | 
							 |-  ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> ( 2nd ` ( 1st ` u ) ) = L )  | 
						
						
							| 63 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( 1st ` ( 2nd ` v ) ) e. _V )  | 
						
						
							| 64 | 
							
								
							 | 
							simp-4r | 
							 |-  ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( u = U /\ v = V ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							simprd | 
							 |-  ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> v = V )  | 
						
						
							| 66 | 
							
								7
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> V = <. <. R , S >. , <. M , N >. >. )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> v = <. <. R , S >. , <. M , N >. >. )  | 
						
						
							| 68 | 
							
								67
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( 2nd ` v ) = ( 2nd ` <. <. R , S >. , <. M , N >. >. ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( 1st ` ( 2nd ` v ) ) = ( 1st ` ( 2nd ` <. <. R , S >. , <. M , N >. >. ) ) )  | 
						
						
							| 70 | 
							
								
							 | 
							opex | 
							 |-  <. R , S >. e. _V  | 
						
						
							| 71 | 
							
								
							 | 
							opex | 
							 |-  <. M , N >. e. _V  | 
						
						
							| 72 | 
							
								70 71
							 | 
							op2nd | 
							 |-  ( 2nd ` <. <. R , S >. , <. M , N >. >. ) = <. M , N >.  | 
						
						
							| 73 | 
							
								72
							 | 
							fveq2i | 
							 |-  ( 1st ` ( 2nd ` <. <. R , S >. , <. M , N >. >. ) ) = ( 1st ` <. M , N >. )  | 
						
						
							| 74 | 
							
								23
							 | 
							brrelex1i | 
							 |-  ( M ( C Func D ) N -> M e. _V )  | 
						
						
							| 75 | 
							
								5 74
							 | 
							syl | 
							 |-  ( ph -> M e. _V )  | 
						
						
							| 76 | 
							
								23
							 | 
							brrelex2i | 
							 |-  ( M ( C Func D ) N -> N e. _V )  | 
						
						
							| 77 | 
							
								5 76
							 | 
							syl | 
							 |-  ( ph -> N e. _V )  | 
						
						
							| 78 | 
							
								
							 | 
							op1stg | 
							 |-  ( ( M e. _V /\ N e. _V ) -> ( 1st ` <. M , N >. ) = M )  | 
						
						
							| 79 | 
							
								75 77 78
							 | 
							syl2anc | 
							 |-  ( ph -> ( 1st ` <. M , N >. ) = M )  | 
						
						
							| 80 | 
							
								73 79
							 | 
							eqtrid | 
							 |-  ( ph -> ( 1st ` ( 2nd ` <. <. R , S >. , <. M , N >. >. ) ) = M )  | 
						
						
							| 81 | 
							
								80
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( 1st ` ( 2nd ` <. <. R , S >. , <. M , N >. >. ) ) = M )  | 
						
						
							| 82 | 
							
								69 81
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> ( 1st ` ( 2nd ` v ) ) = M )  | 
						
						
							| 83 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> ( 1st ` ( 1st ` v ) ) e. _V )  | 
						
						
							| 84 | 
							
								65
							 | 
							adantr | 
							 |-  ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> v = V )  | 
						
						
							| 85 | 
							
								66
							 | 
							adantr | 
							 |-  ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> V = <. <. R , S >. , <. M , N >. >. )  | 
						
						
							| 86 | 
							
								84 85
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> v = <. <. R , S >. , <. M , N >. >. )  | 
						
						
							| 87 | 
							
								86
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> ( 1st ` v ) = ( 1st ` <. <. R , S >. , <. M , N >. >. ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> ( 1st ` ( 1st ` v ) ) = ( 1st ` ( 1st ` <. <. R , S >. , <. M , N >. >. ) ) )  | 
						
						
							| 89 | 
							
								70 71
							 | 
							op1st | 
							 |-  ( 1st ` <. <. R , S >. , <. M , N >. >. ) = <. R , S >.  | 
						
						
							| 90 | 
							
								89
							 | 
							fveq2i | 
							 |-  ( 1st ` ( 1st ` <. <. R , S >. , <. M , N >. >. ) ) = ( 1st ` <. R , S >. )  | 
						
						
							| 91 | 
							
								41
							 | 
							brrelex1i | 
							 |-  ( R ( D Func E ) S -> R e. _V )  | 
						
						
							| 92 | 
							
								6 91
							 | 
							syl | 
							 |-  ( ph -> R e. _V )  | 
						
						
							| 93 | 
							
								41
							 | 
							brrelex2i | 
							 |-  ( R ( D Func E ) S -> S e. _V )  | 
						
						
							| 94 | 
							
								6 93
							 | 
							syl | 
							 |-  ( ph -> S e. _V )  | 
						
						
							| 95 | 
							
								
							 | 
							op1stg | 
							 |-  ( ( R e. _V /\ S e. _V ) -> ( 1st ` <. R , S >. ) = R )  | 
						
						
							| 96 | 
							
								92 94 95
							 | 
							syl2anc | 
							 |-  ( ph -> ( 1st ` <. R , S >. ) = R )  | 
						
						
							| 97 | 
							
								90 96
							 | 
							eqtrid | 
							 |-  ( ph -> ( 1st ` ( 1st ` <. <. R , S >. , <. M , N >. >. ) ) = R )  | 
						
						
							| 98 | 
							
								97
							 | 
							ad5antr | 
							 |-  ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> ( 1st ` ( 1st ` <. <. R , S >. , <. M , N >. >. ) ) = R )  | 
						
						
							| 99 | 
							
								88 98
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> ( 1st ` ( 1st ` v ) ) = R )  | 
						
						
							| 100 | 
							
								55
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 1st ` u ) = ( 1st ` <. <. K , L >. , <. F , G >. >. ) )  | 
						
						
							| 101 | 
							
								100 39
							 | 
							eqtrdi | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 1st ` u ) = <. K , L >. )  | 
						
						
							| 102 | 
							
								87
							 | 
							adantr | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 1st ` v ) = ( 1st ` <. <. R , S >. , <. M , N >. >. ) )  | 
						
						
							| 103 | 
							
								102 89
							 | 
							eqtrdi | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 1st ` v ) = <. R , S >. )  | 
						
						
							| 104 | 
							
								101 103
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) = ( <. K , L >. ( D Nat E ) <. R , S >. ) )  | 
						
						
							| 105 | 
							
								17
							 | 
							ad5antr | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 2nd ` u ) = ( 2nd ` <. <. K , L >. , <. F , G >. >. ) )  | 
						
						
							| 106 | 
							
								105 21
							 | 
							eqtrdi | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 2nd ` u ) = <. F , G >. )  | 
						
						
							| 107 | 
							
								68
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 2nd ` v ) = ( 2nd ` <. <. R , S >. , <. M , N >. >. ) )  | 
						
						
							| 108 | 
							
								107 72
							 | 
							eqtrdi | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( 2nd ` v ) = <. M , N >. )  | 
						
						
							| 109 | 
							
								106 108
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) = ( <. F , G >. ( C Nat D ) <. M , N >. ) )  | 
						
						
							| 110 | 
							
								
							 | 
							simp-4r | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> k = K )  | 
						
						
							| 111 | 
							
								
							 | 
							simp-5r | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> f = F )  | 
						
						
							| 112 | 
							
								111
							 | 
							fveq1d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( f ` x ) = ( F ` x ) )  | 
						
						
							| 113 | 
							
								110 112
							 | 
							fveq12d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( k ` ( f ` x ) ) = ( K ` ( F ` x ) ) )  | 
						
						
							| 114 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> m = M )  | 
						
						
							| 115 | 
							
								114
							 | 
							fveq1d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( m ` x ) = ( M ` x ) )  | 
						
						
							| 116 | 
							
								110 115
							 | 
							fveq12d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( k ` ( m ` x ) ) = ( K ` ( M ` x ) ) )  | 
						
						
							| 117 | 
							
								113 116
							 | 
							opeq12d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. = <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. )  | 
						
						
							| 118 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> r = R )  | 
						
						
							| 119 | 
							
								118 115
							 | 
							fveq12d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( r ` ( m ` x ) ) = ( R ` ( M ` x ) ) )  | 
						
						
							| 120 | 
							
								117 119
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) = ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) )  | 
						
						
							| 121 | 
							
								115
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( b ` ( m ` x ) ) = ( b ` ( M ` x ) ) )  | 
						
						
							| 122 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> l = L )  | 
						
						
							| 123 | 
							
								122 112 115
							 | 
							oveq123d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( ( f ` x ) l ( m ` x ) ) = ( ( F ` x ) L ( M ` x ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							fveq1d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) = ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) )  | 
						
						
							| 125 | 
							
								120 121 124
							 | 
							oveq123d | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) = ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							mpteq2dv | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) = ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) )  | 
						
						
							| 127 | 
							
								104 109 126
							 | 
							mpoeq123dv | 
							 |-  ( ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) /\ r = R ) -> ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) )  | 
						
						
							| 128 | 
							
								83 99 127
							 | 
							csbied2 | 
							 |-  ( ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) /\ m = M ) -> [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) )  | 
						
						
							| 129 | 
							
								63 82 128
							 | 
							csbied2 | 
							 |-  ( ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) /\ l = L ) -> [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) )  | 
						
						
							| 130 | 
							
								51 62 129
							 | 
							csbied2 | 
							 |-  ( ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) /\ k = K ) -> [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) )  | 
						
						
							| 131 | 
							
								33 50 130
							 | 
							csbied2 | 
							 |-  ( ( ( ph /\ ( u = U /\ v = V ) ) /\ f = F ) -> [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) )  | 
						
						
							| 132 | 
							
								13 32 131
							 | 
							csbied2 | 
							 |-  ( ( ph /\ ( u = U /\ v = V ) ) -> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) )  | 
						
						
							| 133 | 
							
								11 4 3 2
							 | 
							fuco2eld | 
							 |-  ( ph -> U e. ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 134 | 
							
								11 7 6 5
							 | 
							fuco2eld | 
							 |-  ( ph -> V e. ( ( D Func E ) X. ( C Func D ) ) )  | 
						
						
							| 135 | 
							
								
							 | 
							ovex | 
							 |-  ( <. K , L >. ( D Nat E ) <. R , S >. ) e. _V  | 
						
						
							| 136 | 
							
								
							 | 
							ovex | 
							 |-  ( <. F , G >. ( C Nat D ) <. M , N >. ) e. _V  | 
						
						
							| 137 | 
							
								135 136
							 | 
							mpoex | 
							 |-  ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) e. _V  | 
						
						
							| 138 | 
							
								137
							 | 
							a1i | 
							 |-  ( ph -> ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) e. _V )  | 
						
						
							| 139 | 
							
								12 132 133 134 138
							 | 
							ovmpod | 
							 |-  ( ph -> ( U P V ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) )  |