| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco11b.o |
|- ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) = O ) |
| 2 |
|
fuco11b.f |
|- ( ph -> F e. ( C Func D ) ) |
| 3 |
|
fuco11b.g |
|- ( ph -> G e. ( D Func E ) ) |
| 4 |
|
relfunc |
|- Rel ( C Func D ) |
| 5 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 6 |
4 2 5
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 7 |
6
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
| 8 |
|
relfunc |
|- Rel ( D Func E ) |
| 9 |
|
1st2ndbr |
|- ( ( Rel ( D Func E ) /\ G e. ( D Func E ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 10 |
8 3 9
|
sylancr |
|- ( ph -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 11 |
10
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 12 |
10
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
| 13 |
|
eqidd |
|- ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) |
| 14 |
7 11 12 13
|
fucoelvv |
|- ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) |
| 15 |
|
1st2nd2 |
|- ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) |
| 17 |
|
eqidd |
|- ( ph -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
| 18 |
7 11 12 16 17
|
fuco1 |
|- ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
| 19 |
1 18
|
eqtr3d |
|- ( ph -> O = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) ) |
| 20 |
19
|
oveqd |
|- ( ph -> ( G O F ) = ( G ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) F ) ) |
| 21 |
|
ovres |
|- ( ( G e. ( D Func E ) /\ F e. ( C Func D ) ) -> ( G ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) F ) = ( G o.func F ) ) |
| 22 |
3 2 21
|
syl2anc |
|- ( ph -> ( G ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) F ) = ( G o.func F ) ) |
| 23 |
20 22
|
eqtrd |
|- ( ph -> ( G O F ) = ( G o.func F ) ) |