Metamath Proof Explorer


Theorem fuco11b

Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses fuco11b.o
|- ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) = O )
fuco11b.f
|- ( ph -> F e. ( C Func D ) )
fuco11b.g
|- ( ph -> G e. ( D Func E ) )
Assertion fuco11b
|- ( ph -> ( G O F ) = ( G o.func F ) )

Proof

Step Hyp Ref Expression
1 fuco11b.o
 |-  ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) = O )
2 fuco11b.f
 |-  ( ph -> F e. ( C Func D ) )
3 fuco11b.g
 |-  ( ph -> G e. ( D Func E ) )
4 2 func1st2nd
 |-  ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )
5 4 funcrcl2
 |-  ( ph -> C e. Cat )
6 3 func1st2nd
 |-  ( ph -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) )
7 6 funcrcl2
 |-  ( ph -> D e. Cat )
8 6 funcrcl3
 |-  ( ph -> E e. Cat )
9 eqidd
 |-  ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) )
10 5 7 8 9 fucoelvv
 |-  ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) )
11 1st2nd2
 |-  ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. )
12 10 11 syl
 |-  ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. )
13 eqidd
 |-  ( ph -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) )
14 5 7 8 12 13 fuco1
 |-  ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )
15 1 14 eqtr3d
 |-  ( ph -> O = ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) )
16 15 oveqd
 |-  ( ph -> ( G O F ) = ( G ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) F ) )
17 ovres
 |-  ( ( G e. ( D Func E ) /\ F e. ( C Func D ) ) -> ( G ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) F ) = ( G o.func F ) )
18 3 2 17 syl2anc
 |-  ( ph -> ( G ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) F ) = ( G o.func F ) )
19 16 18 eqtrd
 |-  ( ph -> ( G O F ) = ( G o.func F ) )