| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco11b.o |
|- ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) = O ) |
| 2 |
|
fuco11b.f |
|- ( ph -> F e. ( C Func D ) ) |
| 3 |
|
fuco11b.g |
|- ( ph -> G e. ( D Func E ) ) |
| 4 |
|
df-ov |
|- ( G O F ) = ( O ` <. G , F >. ) |
| 5 |
|
relfunc |
|- Rel ( D Func E ) |
| 6 |
|
1st2nd |
|- ( ( Rel ( D Func E ) /\ G e. ( D Func E ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 7 |
5 3 6
|
sylancr |
|- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 8 |
|
relfunc |
|- Rel ( C Func D ) |
| 9 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 10 |
8 2 9
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 11 |
7 10
|
oveq12d |
|- ( ph -> ( G o.func F ) = ( <. ( 1st ` G ) , ( 2nd ` G ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 12 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 13 |
8 2 12
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 14 |
13
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
| 15 |
|
1st2ndbr |
|- ( ( Rel ( D Func E ) /\ G e. ( D Func E ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 16 |
5 3 15
|
sylancr |
|- ( ph -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 17 |
16
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 18 |
16
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
| 19 |
|
eqidd |
|- ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) |
| 20 |
14 17 18 19
|
fucoelvv |
|- ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) |
| 21 |
|
1st2nd2 |
|- ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) |
| 23 |
7 10
|
opeq12d |
|- ( ph -> <. G , F >. = <. <. ( 1st ` G ) , ( 2nd ` G ) >. , <. ( 1st ` F ) , ( 2nd ` F ) >. >. ) |
| 24 |
22 13 16 23
|
fuco11 |
|- ( ph -> ( ( 1st ` ( <. C , D >. o.F E ) ) ` <. G , F >. ) = ( <. ( 1st ` G ) , ( 2nd ` G ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 25 |
1
|
fveq1d |
|- ( ph -> ( ( 1st ` ( <. C , D >. o.F E ) ) ` <. G , F >. ) = ( O ` <. G , F >. ) ) |
| 26 |
11 24 25
|
3eqtr2rd |
|- ( ph -> ( O ` <. G , F >. ) = ( G o.func F ) ) |
| 27 |
4 26
|
eqtrid |
|- ( ph -> ( G O F ) = ( G o.func F ) ) |