Step |
Hyp |
Ref |
Expression |
1 |
|
fuco22.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
2 |
|
fuco22.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
3 |
|
fuco22.v |
|- ( ph -> V = <. <. R , S >. , <. M , N >. >. ) |
4 |
|
fuco22.a |
|- ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) ) |
5 |
|
fuco22.b |
|- ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) ) |
6 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
7 |
6 4
|
natrcl2 |
|- ( ph -> F ( C Func D ) G ) |
8 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
9 |
8 5
|
natrcl2 |
|- ( ph -> K ( D Func E ) L ) |
10 |
6 4
|
natrcl3 |
|- ( ph -> M ( C Func D ) N ) |
11 |
8 5
|
natrcl3 |
|- ( ph -> R ( D Func E ) S ) |
12 |
1 7 9 2 10 11 3
|
fuco21 |
|- ( ph -> ( U P V ) = ( b e. ( <. K , L >. ( D Nat E ) <. R , S >. ) , a e. ( <. F , G >. ( C Nat D ) <. M , N >. ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) ) ) |
13 |
|
simplrl |
|- ( ( ( ph /\ ( b = B /\ a = A ) ) /\ x e. ( Base ` C ) ) -> b = B ) |
14 |
13
|
fveq1d |
|- ( ( ( ph /\ ( b = B /\ a = A ) ) /\ x e. ( Base ` C ) ) -> ( b ` ( M ` x ) ) = ( B ` ( M ` x ) ) ) |
15 |
|
simplrr |
|- ( ( ( ph /\ ( b = B /\ a = A ) ) /\ x e. ( Base ` C ) ) -> a = A ) |
16 |
15
|
fveq1d |
|- ( ( ( ph /\ ( b = B /\ a = A ) ) /\ x e. ( Base ` C ) ) -> ( a ` x ) = ( A ` x ) ) |
17 |
16
|
fveq2d |
|- ( ( ( ph /\ ( b = B /\ a = A ) ) /\ x e. ( Base ` C ) ) -> ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) = ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) |
18 |
14 17
|
oveq12d |
|- ( ( ( ph /\ ( b = B /\ a = A ) ) /\ x e. ( Base ` C ) ) -> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) = ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) |
19 |
18
|
mpteq2dva |
|- ( ( ph /\ ( b = B /\ a = A ) ) -> ( x e. ( Base ` C ) |-> ( ( b ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( a ` x ) ) ) ) = ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) ) |
20 |
|
fvexd |
|- ( ph -> ( Base ` C ) e. _V ) |
21 |
20
|
mptexd |
|- ( ph -> ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) e. _V ) |
22 |
12 19 5 4 21
|
ovmpod |
|- ( ph -> ( B ( U P V ) A ) = ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) ) |