| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco22.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco22.u | 
							 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco22.v | 
							 |-  ( ph -> V = <. <. R , S >. , <. M , N >. >. )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco22.a | 
							 |-  ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco22.b | 
							 |-  ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ovex | 
							 |-  ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) e. _V  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) = ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							fnmpti | 
							 |-  ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) Fn ( Base ` C )  | 
						
						
							| 9 | 
							
								1 2 3 4 5
							 | 
							fuco22 | 
							 |-  ( ph -> ( B ( U P V ) A ) = ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							fneq1d | 
							 |-  ( ph -> ( ( B ( U P V ) A ) Fn ( Base ` C ) <-> ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) Fn ( Base ` C ) ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							mpbiri | 
							 |-  ( ph -> ( B ( U P V ) A ) Fn ( Base ` C ) )  |