Step |
Hyp |
Ref |
Expression |
1 |
|
fuco22.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
2 |
|
fuco22.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
3 |
|
fuco22.v |
|- ( ph -> V = <. <. R , S >. , <. M , N >. >. ) |
4 |
|
fuco22.a |
|- ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) ) |
5 |
|
fuco22.b |
|- ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) ) |
6 |
|
ovex |
|- ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) e. _V |
7 |
|
eqid |
|- ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) = ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) |
8 |
6 7
|
fnmpti |
|- ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) Fn ( Base ` C ) |
9 |
1 2 3 4 5
|
fuco22 |
|- ( ph -> ( B ( U P V ) A ) = ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) ) |
10 |
9
|
fneq1d |
|- ( ph -> ( ( B ( U P V ) A ) Fn ( Base ` C ) <-> ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) Fn ( Base ` C ) ) ) |
11 |
8 10
|
mpbiri |
|- ( ph -> ( B ( U P V ) A ) Fn ( Base ` C ) ) |