Metamath Proof Explorer


Theorem fucofn22

Description: The morphism part of the functor composition bifunctor maps two natural transformations to a function on a base set. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco22.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco22.u φ U = K L F G
fuco22.v φ V = R S M N
fuco22.a φ A F G C Nat D M N
fuco22.b φ B K L D Nat E R S
Assertion fucofn22 φ B U P V A Fn Base C

Proof

Step Hyp Ref Expression
1 fuco22.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco22.u φ U = K L F G
3 fuco22.v φ V = R S M N
4 fuco22.a φ A F G C Nat D M N
5 fuco22.b φ B K L D Nat E R S
6 ovex B M x K F x K M x comp E R M x F x L M x A x V
7 eqid x Base C B M x K F x K M x comp E R M x F x L M x A x = x Base C B M x K F x K M x comp E R M x F x L M x A x
8 6 7 fnmpti x Base C B M x K F x K M x comp E R M x F x L M x A x Fn Base C
9 1 2 3 4 5 fuco22 φ B U P V A = x Base C B M x K F x K M x comp E R M x F x L M x A x
10 9 fneq1d φ B U P V A Fn Base C x Base C B M x K F x K M x comp E R M x F x L M x A x Fn Base C
11 8 10 mpbiri φ B U P V A Fn Base C