Metamath Proof Explorer


Theorem fucofn22

Description: The morphism part of the functor composition bifunctor maps two natural transformations to a function on a base set. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco22.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fuco22.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
fuco22.v ( 𝜑𝑉 = ⟨ ⟨ 𝑅 , 𝑆 ⟩ , ⟨ 𝑀 , 𝑁 ⟩ ⟩ )
fuco22.a ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐶 Nat 𝐷 ) ⟨ 𝑀 , 𝑁 ⟩ ) )
fuco22.b ( 𝜑𝐵 ∈ ( ⟨ 𝐾 , 𝐿 ⟩ ( 𝐷 Nat 𝐸 ) ⟨ 𝑅 , 𝑆 ⟩ ) )
Assertion fucofn22 ( 𝜑 → ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) Fn ( Base ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 fuco22.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 fuco22.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
3 fuco22.v ( 𝜑𝑉 = ⟨ ⟨ 𝑅 , 𝑆 ⟩ , ⟨ 𝑀 , 𝑁 ⟩ ⟩ )
4 fuco22.a ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐶 Nat 𝐷 ) ⟨ 𝑀 , 𝑁 ⟩ ) )
5 fuco22.b ( 𝜑𝐵 ∈ ( ⟨ 𝐾 , 𝐿 ⟩ ( 𝐷 Nat 𝐸 ) ⟨ 𝑅 , 𝑆 ⟩ ) )
6 ovex ( ( 𝐵 ‘ ( 𝑀𝑥 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑥 ) ) , ( 𝐾 ‘ ( 𝑀𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑥 ) ) ) ( ( ( 𝐹𝑥 ) 𝐿 ( 𝑀𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) ∈ V
7 eqid ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ ( 𝑀𝑥 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑥 ) ) , ( 𝐾 ‘ ( 𝑀𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑥 ) ) ) ( ( ( 𝐹𝑥 ) 𝐿 ( 𝑀𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ ( 𝑀𝑥 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑥 ) ) , ( 𝐾 ‘ ( 𝑀𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑥 ) ) ) ( ( ( 𝐹𝑥 ) 𝐿 ( 𝑀𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) )
8 6 7 fnmpti ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ ( 𝑀𝑥 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑥 ) ) , ( 𝐾 ‘ ( 𝑀𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑥 ) ) ) ( ( ( 𝐹𝑥 ) 𝐿 ( 𝑀𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) ) Fn ( Base ‘ 𝐶 )
9 1 2 3 4 5 fuco22 ( 𝜑 → ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ ( 𝑀𝑥 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑥 ) ) , ( 𝐾 ‘ ( 𝑀𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑥 ) ) ) ( ( ( 𝐹𝑥 ) 𝐿 ( 𝑀𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) ) )
10 9 fneq1d ( 𝜑 → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) Fn ( Base ‘ 𝐶 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ ( 𝑀𝑥 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑥 ) ) , ( 𝐾 ‘ ( 𝑀𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑥 ) ) ) ( ( ( 𝐹𝑥 ) 𝐿 ( 𝑀𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) ) Fn ( Base ‘ 𝐶 ) ) )
11 8 10 mpbiri ( 𝜑 → ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) Fn ( Base ‘ 𝐶 ) )