| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco22.o | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  〈 𝑂 ,  𝑃 〉 )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco22.u | 
							⊢ ( 𝜑  →  𝑈  =  〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco22.v | 
							⊢ ( 𝜑  →  𝑉  =  〈 〈 𝑅 ,  𝑆 〉 ,  〈 𝑀 ,  𝑁 〉 〉 )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco22.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 ( 𝐶  Nat  𝐷 ) 〈 𝑀 ,  𝑁 〉 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco22.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 〈 𝐾 ,  𝐿 〉 ( 𝐷  Nat  𝐸 ) 〈 𝑅 ,  𝑆 〉 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  Nat  𝐷 )  =  ( 𝐶  Nat  𝐷 )  | 
						
						
							| 7 | 
							
								6 4
							 | 
							natrcl2 | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐷  Nat  𝐸 )  =  ( 𝐷  Nat  𝐸 )  | 
						
						
							| 9 | 
							
								8 5
							 | 
							natrcl2 | 
							⊢ ( 𝜑  →  𝐾 ( 𝐷  Func  𝐸 ) 𝐿 )  | 
						
						
							| 10 | 
							
								6 4
							 | 
							natrcl3 | 
							⊢ ( 𝜑  →  𝑀 ( 𝐶  Func  𝐷 ) 𝑁 )  | 
						
						
							| 11 | 
							
								8 5
							 | 
							natrcl3 | 
							⊢ ( 𝜑  →  𝑅 ( 𝐷  Func  𝐸 ) 𝑆 )  | 
						
						
							| 12 | 
							
								1 7 9 2 10 11 3
							 | 
							fuco21 | 
							⊢ ( 𝜑  →  ( 𝑈 𝑃 𝑉 )  =  ( 𝑏  ∈  ( 〈 𝐾 ,  𝐿 〉 ( 𝐷  Nat  𝐸 ) 〈 𝑅 ,  𝑆 〉 ) ,  𝑎  ∈  ( 〈 𝐹 ,  𝐺 〉 ( 𝐶  Nat  𝐷 ) 〈 𝑀 ,  𝑁 〉 )  ↦  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑏  =  𝐵  ∧  𝑎  =  𝐴 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  𝑏  =  𝐵 )  | 
						
						
							| 14 | 
							
								13
							 | 
							fveq1d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑏  =  𝐵  ∧  𝑎  =  𝐴 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) )  =  ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑏  =  𝐵  ∧  𝑎  =  𝐴 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  𝑎  =  𝐴 )  | 
						
						
							| 16 | 
							
								15
							 | 
							fveq1d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑏  =  𝐵  ∧  𝑎  =  𝐴 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑎 ‘ 𝑥 )  =  ( 𝐴 ‘ 𝑥 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑏  =  𝐵  ∧  𝑎  =  𝐴 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) )  =  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							oveq12d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑏  =  𝐵  ∧  𝑎  =  𝐴 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) )  =  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  ( 𝑏  =  𝐵  ∧  𝑎  =  𝐴 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fvexd | 
							⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  ∈  V )  | 
						
						
							| 21 | 
							
								20
							 | 
							mptexd | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) )  ∈  V )  | 
						
						
							| 22 | 
							
								12 19 5 4 21
							 | 
							ovmpod | 
							⊢ ( 𝜑  →  ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) ) )  |