Step |
Hyp |
Ref |
Expression |
1 |
|
fuco22.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco22.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
3 |
|
fuco22.v |
⊢ ( 𝜑 → 𝑉 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
4 |
|
fuco22.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
5 |
|
fuco22.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ) |
6 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
7 |
6 4
|
natrcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
8 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
9 |
8 5
|
natrcl2 |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
10 |
6 4
|
natrcl3 |
⊢ ( 𝜑 → 𝑀 ( 𝐶 Func 𝐷 ) 𝑁 ) |
11 |
8 5
|
natrcl3 |
⊢ ( 𝜑 → 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 ) |
12 |
1 7 9 2 10 11 3
|
fuco21 |
⊢ ( 𝜑 → ( 𝑈 𝑃 𝑉 ) = ( 𝑏 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) , 𝑎 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
13 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑏 = 𝐵 ) |
14 |
13
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) = ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ) |
15 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑎 = 𝐴 ) |
16 |
15
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑎 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) |
18 |
14 17
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) = ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) ) |
19 |
18
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) ) ) |
20 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ∈ V ) |
21 |
20
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) ) ∈ V ) |
22 |
12 19 5 4 21
|
ovmpod |
⊢ ( 𝜑 → ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) ) ) |