Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco11.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
3 |
|
fuco11.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
4 |
|
fuco11.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
5 |
|
fuco21.m |
⊢ ( 𝜑 → 𝑀 ( 𝐶 Func 𝐷 ) 𝑁 ) |
6 |
|
fuco21.r |
⊢ ( 𝜑 → 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 ) |
7 |
|
fuco21.v |
⊢ ( 𝜑 → 𝑉 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
8 |
2
|
funcrcl2 |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
9 |
3
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
10 |
3
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
11 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
12 |
8 9 10 1 11
|
fuco2 |
⊢ ( 𝜑 → 𝑃 = ( 𝑢 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) , 𝑣 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ↦ ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) |
13 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) → ( 1st ‘ ( 2nd ‘ 𝑢 ) ) ∈ V ) |
14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) → 𝑢 = 𝑈 ) |
15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
16 |
14 15
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) → 𝑢 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) → ( 2nd ‘ 𝑢 ) = ( 2nd ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) → ( 1st ‘ ( 2nd ‘ 𝑢 ) ) = ( 1st ‘ ( 2nd ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) ) |
19 |
|
opex |
⊢ 〈 𝐾 , 𝐿 〉 ∈ V |
20 |
|
opex |
⊢ 〈 𝐹 , 𝐺 〉 ∈ V |
21 |
19 20
|
op2nd |
⊢ ( 2nd ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) = 〈 𝐹 , 𝐺 〉 |
22 |
21
|
fveq2i |
⊢ ( 1st ‘ ( 2nd ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) = ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) |
23 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
24 |
23
|
brrelex1i |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐹 ∈ V ) |
25 |
2 24
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
26 |
23
|
brrelex2i |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐺 ∈ V ) |
27 |
2 26
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
28 |
|
op1stg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
29 |
25 27 28
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
30 |
22 29
|
eqtrid |
⊢ ( 𝜑 → ( 1st ‘ ( 2nd ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) = 𝐹 ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) → ( 1st ‘ ( 2nd ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) = 𝐹 ) |
32 |
18 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) → ( 1st ‘ ( 2nd ‘ 𝑢 ) ) = 𝐹 ) |
33 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( 1st ‘ ( 1st ‘ 𝑢 ) ) ∈ V ) |
34 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → 𝑢 = 𝑈 ) |
35 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
36 |
34 35
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → 𝑢 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
37 |
36
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( 1st ‘ 𝑢 ) = ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) |
38 |
37
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( 1st ‘ ( 1st ‘ 𝑢 ) ) = ( 1st ‘ ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) ) |
39 |
19 20
|
op1st |
⊢ ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) = 〈 𝐾 , 𝐿 〉 |
40 |
39
|
fveq2i |
⊢ ( 1st ‘ ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) = ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) |
41 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
42 |
41
|
brrelex1i |
⊢ ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 → 𝐾 ∈ V ) |
43 |
3 42
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
44 |
41
|
brrelex2i |
⊢ ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 → 𝐿 ∈ V ) |
45 |
3 44
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
46 |
|
op1stg |
⊢ ( ( 𝐾 ∈ V ∧ 𝐿 ∈ V ) → ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐾 ) |
47 |
43 45 46
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐾 ) |
48 |
40 47
|
eqtrid |
⊢ ( 𝜑 → ( 1st ‘ ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) = 𝐾 ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( 1st ‘ ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) = 𝐾 ) |
50 |
38 49
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( 1st ‘ ( 1st ‘ 𝑢 ) ) = 𝐾 ) |
51 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) → ( 2nd ‘ ( 1st ‘ 𝑢 ) ) ∈ V ) |
52 |
34
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) → 𝑢 = 𝑈 ) |
53 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
54 |
52 53
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) → 𝑢 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
55 |
54
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) → ( 1st ‘ 𝑢 ) = ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) |
56 |
55
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) → ( 2nd ‘ ( 1st ‘ 𝑢 ) ) = ( 2nd ‘ ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) ) |
57 |
39
|
fveq2i |
⊢ ( 2nd ‘ ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) = ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) |
58 |
|
op2ndg |
⊢ ( ( 𝐾 ∈ V ∧ 𝐿 ∈ V ) → ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐿 ) |
59 |
43 45 58
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐿 ) |
60 |
57 59
|
eqtrid |
⊢ ( 𝜑 → ( 2nd ‘ ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) = 𝐿 ) |
61 |
60
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) → ( 2nd ‘ ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) = 𝐿 ) |
62 |
56 61
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) → ( 2nd ‘ ( 1st ‘ 𝑢 ) ) = 𝐿 ) |
63 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) → ( 1st ‘ ( 2nd ‘ 𝑣 ) ) ∈ V ) |
64 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) → ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) |
65 |
64
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) → 𝑣 = 𝑉 ) |
66 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) → 𝑉 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
67 |
65 66
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) → 𝑣 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
68 |
67
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) → ( 2nd ‘ 𝑣 ) = ( 2nd ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) |
69 |
68
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) → ( 1st ‘ ( 2nd ‘ 𝑣 ) ) = ( 1st ‘ ( 2nd ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) ) |
70 |
|
opex |
⊢ 〈 𝑅 , 𝑆 〉 ∈ V |
71 |
|
opex |
⊢ 〈 𝑀 , 𝑁 〉 ∈ V |
72 |
70 71
|
op2nd |
⊢ ( 2nd ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) = 〈 𝑀 , 𝑁 〉 |
73 |
72
|
fveq2i |
⊢ ( 1st ‘ ( 2nd ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) = ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) |
74 |
23
|
brrelex1i |
⊢ ( 𝑀 ( 𝐶 Func 𝐷 ) 𝑁 → 𝑀 ∈ V ) |
75 |
5 74
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
76 |
23
|
brrelex2i |
⊢ ( 𝑀 ( 𝐶 Func 𝐷 ) 𝑁 → 𝑁 ∈ V ) |
77 |
5 76
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ V ) |
78 |
|
op1stg |
⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑀 ) |
79 |
75 77 78
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑀 ) |
80 |
73 79
|
eqtrid |
⊢ ( 𝜑 → ( 1st ‘ ( 2nd ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) = 𝑀 ) |
81 |
80
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) → ( 1st ‘ ( 2nd ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) = 𝑀 ) |
82 |
69 81
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) → ( 1st ‘ ( 2nd ‘ 𝑣 ) ) = 𝑀 ) |
83 |
|
fvexd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) → ( 1st ‘ ( 1st ‘ 𝑣 ) ) ∈ V ) |
84 |
65
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) → 𝑣 = 𝑉 ) |
85 |
66
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) → 𝑉 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
86 |
84 85
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) → 𝑣 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
87 |
86
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) → ( 1st ‘ 𝑣 ) = ( 1st ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) |
88 |
87
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) → ( 1st ‘ ( 1st ‘ 𝑣 ) ) = ( 1st ‘ ( 1st ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) ) |
89 |
70 71
|
op1st |
⊢ ( 1st ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) = 〈 𝑅 , 𝑆 〉 |
90 |
89
|
fveq2i |
⊢ ( 1st ‘ ( 1st ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) = ( 1st ‘ 〈 𝑅 , 𝑆 〉 ) |
91 |
41
|
brrelex1i |
⊢ ( 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 → 𝑅 ∈ V ) |
92 |
6 91
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
93 |
41
|
brrelex2i |
⊢ ( 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 → 𝑆 ∈ V ) |
94 |
6 93
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
95 |
|
op1stg |
⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 1st ‘ 〈 𝑅 , 𝑆 〉 ) = 𝑅 ) |
96 |
92 94 95
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝑅 , 𝑆 〉 ) = 𝑅 ) |
97 |
90 96
|
eqtrid |
⊢ ( 𝜑 → ( 1st ‘ ( 1st ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) = 𝑅 ) |
98 |
97
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) → ( 1st ‘ ( 1st ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) = 𝑅 ) |
99 |
88 98
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) → ( 1st ‘ ( 1st ‘ 𝑣 ) ) = 𝑅 ) |
100 |
55
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 1st ‘ 𝑢 ) = ( 1st ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) |
101 |
100 39
|
eqtrdi |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 1st ‘ 𝑢 ) = 〈 𝐾 , 𝐿 〉 ) |
102 |
87
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 1st ‘ 𝑣 ) = ( 1st ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) |
103 |
102 89
|
eqtrdi |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 1st ‘ 𝑣 ) = 〈 𝑅 , 𝑆 〉 ) |
104 |
101 103
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) = ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ) |
105 |
17
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 2nd ‘ 𝑢 ) = ( 2nd ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) |
106 |
105 21
|
eqtrdi |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 2nd ‘ 𝑢 ) = 〈 𝐹 , 𝐺 〉 ) |
107 |
68
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 2nd ‘ 𝑣 ) = ( 2nd ‘ 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) ) |
108 |
107 72
|
eqtrdi |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 2nd ‘ 𝑣 ) = 〈 𝑀 , 𝑁 〉 ) |
109 |
106 108
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) = ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
110 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → 𝑘 = 𝐾 ) |
111 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → 𝑓 = 𝐹 ) |
112 |
111
|
fveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
113 |
110 112
|
fveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
114 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → 𝑚 = 𝑀 ) |
115 |
114
|
fveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 𝑚 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
116 |
110 115
|
fveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) = ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) ) |
117 |
113 116
|
opeq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 = 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ) |
118 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
119 |
118 115
|
fveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) = ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) |
120 |
117 119
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
121 |
115
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) = ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ) |
122 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → 𝑙 = 𝐿 ) |
123 |
122 112 115
|
oveq123d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ) |
124 |
123
|
fveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) |
125 |
120 121 124
|
oveq123d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) = ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) |
126 |
125
|
mpteq2dv |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
127 |
104 109 126
|
mpoeq123dv |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑟 = 𝑅 ) → ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( 𝑏 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) , 𝑎 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
128 |
83 99 127
|
csbied2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) ∧ 𝑚 = 𝑀 ) → ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( 𝑏 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) , 𝑎 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
129 |
63 82 128
|
csbied2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑙 = 𝐿 ) → ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( 𝑏 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) , 𝑎 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
130 |
51 62 129
|
csbied2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) ∧ 𝑘 = 𝐾 ) → ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( 𝑏 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) , 𝑎 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
131 |
33 50 130
|
csbied2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( 𝑏 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) , 𝑎 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
132 |
13 32 131
|
csbied2 |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) ) → ⦋ ( 1st ‘ ( 2nd ‘ 𝑢 ) ) / 𝑓 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑢 ) ) / 𝑘 ⦌ ⦋ ( 2nd ‘ ( 1st ‘ 𝑢 ) ) / 𝑙 ⦌ ⦋ ( 1st ‘ ( 2nd ‘ 𝑣 ) ) / 𝑚 ⦌ ⦋ ( 1st ‘ ( 1st ‘ 𝑣 ) ) / 𝑟 ⦌ ( 𝑏 ∈ ( ( 1st ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 1st ‘ 𝑣 ) ) , 𝑎 ∈ ( ( 2nd ‘ 𝑢 ) ( 𝐶 Nat 𝐷 ) ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑚 ‘ 𝑥 ) ) ( 〈 ( 𝑘 ‘ ( 𝑓 ‘ 𝑥 ) ) , ( 𝑘 ‘ ( 𝑚 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑟 ‘ ( 𝑚 ‘ 𝑥 ) ) ) ( ( ( 𝑓 ‘ 𝑥 ) 𝑙 ( 𝑚 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( 𝑏 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) , 𝑎 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
133 |
11 4 3 2
|
fuco2eld |
⊢ ( 𝜑 → 𝑈 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
134 |
11 7 6 5
|
fuco2eld |
⊢ ( 𝜑 → 𝑉 ∈ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
135 |
|
ovex |
⊢ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ∈ V |
136 |
|
ovex |
⊢ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ∈ V |
137 |
135 136
|
mpoex |
⊢ ( 𝑏 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) , 𝑎 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ∈ V |
138 |
137
|
a1i |
⊢ ( 𝜑 → ( 𝑏 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) , 𝑎 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ∈ V ) |
139 |
12 132 133 134 138
|
ovmpod |
⊢ ( 𝜑 → ( 𝑈 𝑃 𝑉 ) = ( 𝑏 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) , 𝑎 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |