| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco11b.o |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) = 𝑂 ) |
| 2 |
|
fuco11b.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 3 |
|
fuco11b.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 Func 𝐸 ) ) |
| 4 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
| 5 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 6 |
4 2 5
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 7 |
6
|
funcrcl2 |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 8 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 9 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐺 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st ‘ 𝐺 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐺 ) ) |
| 10 |
8 3 9
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐺 ) ) |
| 11 |
10
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 12 |
10
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 13 |
|
eqidd |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) |
| 14 |
7 11 12 13
|
fucoelvv |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ∈ ( V × V ) ) |
| 15 |
|
1st2nd2 |
⊢ ( ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ∈ ( V × V ) → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) , ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 〉 ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) , ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) 〉 ) |
| 17 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) = ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) |
| 18 |
7 11 12 16 17
|
fuco1 |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ) = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
| 19 |
1 18
|
eqtr3d |
⊢ ( 𝜑 → 𝑂 = ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) ) |
| 20 |
19
|
oveqd |
⊢ ( 𝜑 → ( 𝐺 𝑂 𝐹 ) = ( 𝐺 ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) 𝐹 ) ) |
| 21 |
|
ovres |
⊢ ( ( 𝐺 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 𝐺 ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) 𝐹 ) = ( 𝐺 ∘func 𝐹 ) ) |
| 22 |
3 2 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ( ∘func ↾ ( ( 𝐷 Func 𝐸 ) × ( 𝐶 Func 𝐷 ) ) ) 𝐹 ) = ( 𝐺 ∘func 𝐹 ) ) |
| 23 |
20 22
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 𝑂 𝐹 ) = ( 𝐺 ∘func 𝐹 ) ) |