Metamath Proof Explorer


Theorem fuco11bALT

Description: Alternate proof of fuco11b . (Contributed by Zhi Wang, 11-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses fuco11b.o ( 𝜑 → ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) = 𝑂 )
fuco11b.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
fuco11b.g ( 𝜑𝐺 ∈ ( 𝐷 Func 𝐸 ) )
Assertion fuco11bALT ( 𝜑 → ( 𝐺 𝑂 𝐹 ) = ( 𝐺func 𝐹 ) )

Proof

Step Hyp Ref Expression
1 fuco11b.o ( 𝜑 → ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) = 𝑂 )
2 fuco11b.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
3 fuco11b.g ( 𝜑𝐺 ∈ ( 𝐷 Func 𝐸 ) )
4 df-ov ( 𝐺 𝑂 𝐹 ) = ( 𝑂 ‘ ⟨ 𝐺 , 𝐹 ⟩ )
5 relfunc Rel ( 𝐷 Func 𝐸 )
6 1st2nd ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐺 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐺 = ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ )
7 5 3 6 sylancr ( 𝜑𝐺 = ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ )
8 relfunc Rel ( 𝐶 Func 𝐷 )
9 1st2nd ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
10 8 2 9 sylancr ( 𝜑𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
11 7 10 oveq12d ( 𝜑 → ( 𝐺func 𝐹 ) = ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ∘func ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
12 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
13 8 2 12 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
14 13 funcrcl2 ( 𝜑𝐶 ∈ Cat )
15 1st2ndbr ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐺 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝐺 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐺 ) )
16 5 3 15 sylancr ( 𝜑 → ( 1st𝐺 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐺 ) )
17 16 funcrcl2 ( 𝜑𝐷 ∈ Cat )
18 16 funcrcl3 ( 𝜑𝐸 ∈ Cat )
19 eqidd ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) )
20 14 17 18 19 fucoelvv ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( V × V ) )
21 1st2nd2 ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( V × V ) → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ )
22 20 21 syl ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ )
23 7 10 opeq12d ( 𝜑 → ⟨ 𝐺 , 𝐹 ⟩ = ⟨ ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ , ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ⟩ )
24 22 13 16 23 fuco11 ( 𝜑 → ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ‘ ⟨ 𝐺 , 𝐹 ⟩ ) = ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ∘func ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
25 1 fveq1d ( 𝜑 → ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ‘ ⟨ 𝐺 , 𝐹 ⟩ ) = ( 𝑂 ‘ ⟨ 𝐺 , 𝐹 ⟩ ) )
26 11 24 25 3eqtr2rd ( 𝜑 → ( 𝑂 ‘ ⟨ 𝐺 , 𝐹 ⟩ ) = ( 𝐺func 𝐹 ) )
27 4 26 eqtrid ( 𝜑 → ( 𝐺 𝑂 𝐹 ) = ( 𝐺func 𝐹 ) )