Step |
Hyp |
Ref |
Expression |
1 |
|
fuco22.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco22.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
3 |
|
fuco22.v |
⊢ ( 𝜑 → 𝑉 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
4 |
|
fuco22.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
5 |
|
fuco22.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ) |
6 |
|
fuco23.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
7 |
|
fuco23.o |
⊢ ( 𝜑 → ∗ = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
8 |
1 2 3 4 5
|
fuco22 |
⊢ ( 𝜑 → ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) ) ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
12 |
9
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑋 ) ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) = ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) ) |
14 |
11 13
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 = 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ) |
15 |
12
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) = ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) |
16 |
14 15
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ∗ = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
18 |
16 17
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) = ∗ ) |
19 |
12
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) = ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ) |
20 |
10 12
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ) |
21 |
9
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑋 ) ) |
22 |
20 21
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) |
23 |
18 19 22
|
oveq123d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) = ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ∗ ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
24 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ∗ ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ∈ V ) |
25 |
8 23 6 24
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) = ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ∗ ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |