| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco22.o | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  〈 𝑂 ,  𝑃 〉 )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco22.u | 
							⊢ ( 𝜑  →  𝑈  =  〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco22.v | 
							⊢ ( 𝜑  →  𝑉  =  〈 〈 𝑅 ,  𝑆 〉 ,  〈 𝑀 ,  𝑁 〉 〉 )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco22.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 ( 𝐶  Nat  𝐷 ) 〈 𝑀 ,  𝑁 〉 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco22.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 〈 𝐾 ,  𝐿 〉 ( 𝐷  Nat  𝐸 ) 〈 𝑅 ,  𝑆 〉 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco23.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fuco23.o | 
							⊢ ( 𝜑  →   ∗   =  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) )  | 
						
						
							| 8 | 
							
								1 2 3 4 5
							 | 
							fuco22 | 
							⊢ ( 𝜑  →  ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  𝑥  =  𝑋 )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 12 | 
							
								9
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑋 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) )  =  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							opeq12d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉  =  〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 )  | 
						
						
							| 15 | 
							
								12
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) )  =  ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) )  =  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) )  | 
						
						
							| 17 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →   ∗   =  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) )  =   ∗  )  | 
						
						
							| 19 | 
							
								12
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) )  =  ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) )  | 
						
						
							| 20 | 
							
								10 12
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) )  | 
						
						
							| 21 | 
							
								9
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝐴 ‘ 𝑥 )  =  ( 𝐴 ‘ 𝑋 ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							fveq12d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) )  =  ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) )  | 
						
						
							| 23 | 
							
								18 19 22
							 | 
							oveq123d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) )  =  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) )  ∗  ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							ovexd | 
							⊢ ( 𝜑  →  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) )  ∗  ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) )  ∈  V )  | 
						
						
							| 25 | 
							
								8 23 6 24
							 | 
							fvmptd | 
							⊢ ( 𝜑  →  ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 )  =  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) )  ∗  ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) )  |