Metamath Proof Explorer


Theorem fuco23

Description: The morphism part of the functor composition bifunctor. See also fuco23a . (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fuco22.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco22.u φ U = K L F G
fuco22.v φ V = R S M N
fuco22.a φ A F G C Nat D M N
fuco22.b φ B K L D Nat E R S
fuco23.x φ X Base C
fuco23.o φ ˙ = K F X K M X comp E R M X
Assertion fuco23 φ B U P V A X = B M X ˙ F X L M X A X

Proof

Step Hyp Ref Expression
1 fuco22.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco22.u φ U = K L F G
3 fuco22.v φ V = R S M N
4 fuco22.a φ A F G C Nat D M N
5 fuco22.b φ B K L D Nat E R S
6 fuco23.x φ X Base C
7 fuco23.o φ ˙ = K F X K M X comp E R M X
8 1 2 3 4 5 fuco22 φ B U P V A = x Base C B M x K F x K M x comp E R M x F x L M x A x
9 simpr φ x = X x = X
10 9 fveq2d φ x = X F x = F X
11 10 fveq2d φ x = X K F x = K F X
12 9 fveq2d φ x = X M x = M X
13 12 fveq2d φ x = X K M x = K M X
14 11 13 opeq12d φ x = X K F x K M x = K F X K M X
15 12 fveq2d φ x = X R M x = R M X
16 14 15 oveq12d φ x = X K F x K M x comp E R M x = K F X K M X comp E R M X
17 7 adantr φ x = X ˙ = K F X K M X comp E R M X
18 16 17 eqtr4d φ x = X K F x K M x comp E R M x = ˙
19 12 fveq2d φ x = X B M x = B M X
20 10 12 oveq12d φ x = X F x L M x = F X L M X
21 9 fveq2d φ x = X A x = A X
22 20 21 fveq12d φ x = X F x L M x A x = F X L M X A X
23 18 19 22 oveq123d φ x = X B M x K F x K M x comp E R M x F x L M x A x = B M X ˙ F X L M X A X
24 ovexd φ B M X ˙ F X L M X A X V
25 8 23 6 24 fvmptd φ B U P V A X = B M X ˙ F X L M X A X