| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco22.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
| 2 |
|
fuco22.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
| 3 |
|
fuco22.v |
|- ( ph -> V = <. <. R , S >. , <. M , N >. >. ) |
| 4 |
|
fuco22.a |
|- ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) ) |
| 5 |
|
fuco22.b |
|- ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) ) |
| 6 |
|
fuco23.x |
|- ( ph -> X e. ( Base ` C ) ) |
| 7 |
|
fuco23.o |
|- ( ph -> .* = ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ) |
| 8 |
1 2 3 4 5
|
fuco22 |
|- ( ph -> ( B ( U P V ) A ) = ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) ) |
| 9 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
| 10 |
9
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( F ` x ) = ( F ` X ) ) |
| 11 |
10
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( K ` ( F ` x ) ) = ( K ` ( F ` X ) ) ) |
| 12 |
9
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( M ` x ) = ( M ` X ) ) |
| 13 |
12
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( K ` ( M ` x ) ) = ( K ` ( M ` X ) ) ) |
| 14 |
11 13
|
opeq12d |
|- ( ( ph /\ x = X ) -> <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. = <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ) |
| 15 |
12
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( R ` ( M ` x ) ) = ( R ` ( M ` X ) ) ) |
| 16 |
14 15
|
oveq12d |
|- ( ( ph /\ x = X ) -> ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) = ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ) |
| 17 |
7
|
adantr |
|- ( ( ph /\ x = X ) -> .* = ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ) |
| 18 |
16 17
|
eqtr4d |
|- ( ( ph /\ x = X ) -> ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) = .* ) |
| 19 |
12
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( B ` ( M ` x ) ) = ( B ` ( M ` X ) ) ) |
| 20 |
10 12
|
oveq12d |
|- ( ( ph /\ x = X ) -> ( ( F ` x ) L ( M ` x ) ) = ( ( F ` X ) L ( M ` X ) ) ) |
| 21 |
9
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( A ` x ) = ( A ` X ) ) |
| 22 |
20 21
|
fveq12d |
|- ( ( ph /\ x = X ) -> ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) = ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) |
| 23 |
18 19 22
|
oveq123d |
|- ( ( ph /\ x = X ) -> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) = ( ( B ` ( M ` X ) ) .* ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) ) |
| 24 |
|
ovexd |
|- ( ph -> ( ( B ` ( M ` X ) ) .* ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) e. _V ) |
| 25 |
8 23 6 24
|
fvmptd |
|- ( ph -> ( ( B ( U P V ) A ) ` X ) = ( ( B ` ( M ` X ) ) .* ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) ) |