| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco22.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco22.u | 
							 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco22.v | 
							 |-  ( ph -> V = <. <. R , S >. , <. M , N >. >. )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco22.a | 
							 |-  ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco22.b | 
							 |-  ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco23.x | 
							 |-  ( ph -> X e. ( Base ` C ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fuco23.o | 
							 |-  ( ph -> .* = ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) )  | 
						
						
							| 8 | 
							
								1 2 3 4 5
							 | 
							fuco22 | 
							 |-  ( ph -> ( B ( U P V ) A ) = ( x e. ( Base ` C ) |-> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x = X ) -> x = X )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2d | 
							 |-  ( ( ph /\ x = X ) -> ( F ` x ) = ( F ` X ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							fveq2d | 
							 |-  ( ( ph /\ x = X ) -> ( K ` ( F ` x ) ) = ( K ` ( F ` X ) ) )  | 
						
						
							| 12 | 
							
								9
							 | 
							fveq2d | 
							 |-  ( ( ph /\ x = X ) -> ( M ` x ) = ( M ` X ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							fveq2d | 
							 |-  ( ( ph /\ x = X ) -> ( K ` ( M ` x ) ) = ( K ` ( M ` X ) ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							opeq12d | 
							 |-  ( ( ph /\ x = X ) -> <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. = <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. )  | 
						
						
							| 15 | 
							
								12
							 | 
							fveq2d | 
							 |-  ( ( ph /\ x = X ) -> ( R ` ( M ` x ) ) = ( R ` ( M ` X ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							oveq12d | 
							 |-  ( ( ph /\ x = X ) -> ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) = ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) )  | 
						
						
							| 17 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ph /\ x = X ) -> .* = ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtr4d | 
							 |-  ( ( ph /\ x = X ) -> ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) = .* )  | 
						
						
							| 19 | 
							
								12
							 | 
							fveq2d | 
							 |-  ( ( ph /\ x = X ) -> ( B ` ( M ` x ) ) = ( B ` ( M ` X ) ) )  | 
						
						
							| 20 | 
							
								10 12
							 | 
							oveq12d | 
							 |-  ( ( ph /\ x = X ) -> ( ( F ` x ) L ( M ` x ) ) = ( ( F ` X ) L ( M ` X ) ) )  | 
						
						
							| 21 | 
							
								9
							 | 
							fveq2d | 
							 |-  ( ( ph /\ x = X ) -> ( A ` x ) = ( A ` X ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							fveq12d | 
							 |-  ( ( ph /\ x = X ) -> ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) = ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) )  | 
						
						
							| 23 | 
							
								18 19 22
							 | 
							oveq123d | 
							 |-  ( ( ph /\ x = X ) -> ( ( B ` ( M ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( M ` x ) ) >. ( comp ` E ) ( R ` ( M ` x ) ) ) ( ( ( F ` x ) L ( M ` x ) ) ` ( A ` x ) ) ) = ( ( B ` ( M ` X ) ) .* ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							ovexd | 
							 |-  ( ph -> ( ( B ` ( M ` X ) ) .* ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) e. _V )  | 
						
						
							| 25 | 
							
								8 23 6 24
							 | 
							fvmptd | 
							 |-  ( ph -> ( ( B ( U P V ) A ) ` X ) = ( ( B ` ( M ` X ) ) .* ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) )  |