| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco22natlem1.x |
|- ( ph -> X e. ( Base ` C ) ) |
| 2 |
|
fuco22natlem1.y |
|- ( ph -> Y e. ( Base ` C ) ) |
| 3 |
|
fuco22natlem1.a |
|- ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) ) |
| 4 |
|
fuco22natlem1.h |
|- ( ph -> H e. ( X ( Hom ` C ) Y ) ) |
| 5 |
|
fuco22natlem1.k |
|- ( ph -> K ( D Func E ) L ) |
| 6 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
| 7 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 9 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 10 |
6 3 7 8 9 1 2 4
|
nati |
|- ( ph -> ( ( A ` Y ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( M ` Y ) ) ( ( X G Y ) ` H ) ) = ( ( ( X N Y ) ` H ) ( <. ( F ` X ) , ( M ` X ) >. ( comp ` D ) ( M ` Y ) ) ( A ` X ) ) ) |
| 11 |
10
|
fveq2d |
|- ( ph -> ( ( ( F ` X ) L ( M ` Y ) ) ` ( ( A ` Y ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( M ` Y ) ) ( ( X G Y ) ` H ) ) ) = ( ( ( F ` X ) L ( M ` Y ) ) ` ( ( ( X N Y ) ` H ) ( <. ( F ` X ) , ( M ` X ) >. ( comp ` D ) ( M ` Y ) ) ( A ` X ) ) ) ) |
| 12 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 13 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 14 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 15 |
6 3
|
natrcl2 |
|- ( ph -> F ( C Func D ) G ) |
| 16 |
7 12 15
|
funcf1 |
|- ( ph -> F : ( Base ` C ) --> ( Base ` D ) ) |
| 17 |
16 1
|
ffvelcdmd |
|- ( ph -> ( F ` X ) e. ( Base ` D ) ) |
| 18 |
16 2
|
ffvelcdmd |
|- ( ph -> ( F ` Y ) e. ( Base ` D ) ) |
| 19 |
6 3
|
natrcl3 |
|- ( ph -> M ( C Func D ) N ) |
| 20 |
7 12 19
|
funcf1 |
|- ( ph -> M : ( Base ` C ) --> ( Base ` D ) ) |
| 21 |
20 2
|
ffvelcdmd |
|- ( ph -> ( M ` Y ) e. ( Base ` D ) ) |
| 22 |
7 8 13 15 1 2
|
funcf2 |
|- ( ph -> ( X G Y ) : ( X ( Hom ` C ) Y ) --> ( ( F ` X ) ( Hom ` D ) ( F ` Y ) ) ) |
| 23 |
22 4
|
ffvelcdmd |
|- ( ph -> ( ( X G Y ) ` H ) e. ( ( F ` X ) ( Hom ` D ) ( F ` Y ) ) ) |
| 24 |
6 3 7 13 2
|
natcl |
|- ( ph -> ( A ` Y ) e. ( ( F ` Y ) ( Hom ` D ) ( M ` Y ) ) ) |
| 25 |
12 13 9 14 5 17 18 21 23 24
|
funcco |
|- ( ph -> ( ( ( F ` X ) L ( M ` Y ) ) ` ( ( A ` Y ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( M ` Y ) ) ( ( X G Y ) ` H ) ) ) = ( ( ( ( F ` Y ) L ( M ` Y ) ) ` ( A ` Y ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( F ` Y ) ) >. ( comp ` E ) ( K ` ( M ` Y ) ) ) ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` H ) ) ) ) |
| 26 |
20 1
|
ffvelcdmd |
|- ( ph -> ( M ` X ) e. ( Base ` D ) ) |
| 27 |
6 3 7 13 1
|
natcl |
|- ( ph -> ( A ` X ) e. ( ( F ` X ) ( Hom ` D ) ( M ` X ) ) ) |
| 28 |
7 8 13 19 1 2
|
funcf2 |
|- ( ph -> ( X N Y ) : ( X ( Hom ` C ) Y ) --> ( ( M ` X ) ( Hom ` D ) ( M ` Y ) ) ) |
| 29 |
28 4
|
ffvelcdmd |
|- ( ph -> ( ( X N Y ) ` H ) e. ( ( M ` X ) ( Hom ` D ) ( M ` Y ) ) ) |
| 30 |
12 13 9 14 5 17 26 21 27 29
|
funcco |
|- ( ph -> ( ( ( F ` X ) L ( M ` Y ) ) ` ( ( ( X N Y ) ` H ) ( <. ( F ` X ) , ( M ` X ) >. ( comp ` D ) ( M ` Y ) ) ( A ` X ) ) ) = ( ( ( ( M ` X ) L ( M ` Y ) ) ` ( ( X N Y ) ` H ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( K ` ( M ` Y ) ) ) ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) ) |
| 31 |
11 25 30
|
3eqtr3d |
|- ( ph -> ( ( ( ( F ` Y ) L ( M ` Y ) ) ` ( A ` Y ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( F ` Y ) ) >. ( comp ` E ) ( K ` ( M ` Y ) ) ) ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` H ) ) ) = ( ( ( ( M ` X ) L ( M ` Y ) ) ` ( ( X N Y ) ` H ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( K ` ( M ` Y ) ) ) ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) ) |