Step |
Hyp |
Ref |
Expression |
1 |
|
fuco22nat.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
2 |
|
fuco22nat.a |
|- ( ph -> A e. ( F ( C Nat D ) M ) ) |
3 |
|
fuco22nat.b |
|- ( ph -> B e. ( K ( D Nat E ) R ) ) |
4 |
|
fuco22nat.u |
|- ( ph -> U = <. K , F >. ) |
5 |
|
fuco22nat.v |
|- ( ph -> V = <. R , M >. ) |
6 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
7 |
6 2
|
nat1st2nd |
|- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C Nat D ) <. ( 1st ` M ) , ( 2nd ` M ) >. ) ) |
8 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
9 |
8 3
|
nat1st2nd |
|- ( ph -> B e. ( <. ( 1st ` K ) , ( 2nd ` K ) >. ( D Nat E ) <. ( 1st ` R ) , ( 2nd ` R ) >. ) ) |
10 |
|
relfunc |
|- Rel ( D Func E ) |
11 |
8
|
natrcl |
|- ( B e. ( K ( D Nat E ) R ) -> ( K e. ( D Func E ) /\ R e. ( D Func E ) ) ) |
12 |
3 11
|
syl |
|- ( ph -> ( K e. ( D Func E ) /\ R e. ( D Func E ) ) ) |
13 |
12
|
simpld |
|- ( ph -> K e. ( D Func E ) ) |
14 |
|
1st2nd |
|- ( ( Rel ( D Func E ) /\ K e. ( D Func E ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
15 |
10 13 14
|
sylancr |
|- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
16 |
|
relfunc |
|- Rel ( C Func D ) |
17 |
6
|
natrcl |
|- ( A e. ( F ( C Nat D ) M ) -> ( F e. ( C Func D ) /\ M e. ( C Func D ) ) ) |
18 |
2 17
|
syl |
|- ( ph -> ( F e. ( C Func D ) /\ M e. ( C Func D ) ) ) |
19 |
18
|
simpld |
|- ( ph -> F e. ( C Func D ) ) |
20 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
21 |
16 19 20
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
22 |
15 21
|
opeq12d |
|- ( ph -> <. K , F >. = <. <. ( 1st ` K ) , ( 2nd ` K ) >. , <. ( 1st ` F ) , ( 2nd ` F ) >. >. ) |
23 |
4 22
|
eqtrd |
|- ( ph -> U = <. <. ( 1st ` K ) , ( 2nd ` K ) >. , <. ( 1st ` F ) , ( 2nd ` F ) >. >. ) |
24 |
12
|
simprd |
|- ( ph -> R e. ( D Func E ) ) |
25 |
|
1st2nd |
|- ( ( Rel ( D Func E ) /\ R e. ( D Func E ) ) -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
26 |
10 24 25
|
sylancr |
|- ( ph -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
27 |
18
|
simprd |
|- ( ph -> M e. ( C Func D ) ) |
28 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ M e. ( C Func D ) ) -> M = <. ( 1st ` M ) , ( 2nd ` M ) >. ) |
29 |
16 27 28
|
sylancr |
|- ( ph -> M = <. ( 1st ` M ) , ( 2nd ` M ) >. ) |
30 |
26 29
|
opeq12d |
|- ( ph -> <. R , M >. = <. <. ( 1st ` R ) , ( 2nd ` R ) >. , <. ( 1st ` M ) , ( 2nd ` M ) >. >. ) |
31 |
5 30
|
eqtrd |
|- ( ph -> V = <. <. ( 1st ` R ) , ( 2nd ` R ) >. , <. ( 1st ` M ) , ( 2nd ` M ) >. >. ) |
32 |
1 7 9 23 31
|
fuco22natlem |
|- ( ph -> ( B ( U P V ) A ) e. ( ( O ` U ) ( C Nat E ) ( O ` V ) ) ) |