Step |
Hyp |
Ref |
Expression |
1 |
|
fuco22nat.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco22nat.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 ( 𝐶 Nat 𝐷 ) 𝑀 ) ) |
3 |
|
fuco22nat.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑅 ) ) |
4 |
|
fuco22nat.u |
⊢ ( 𝜑 → 𝑈 = 〈 𝐾 , 𝐹 〉 ) |
5 |
|
fuco22nat.v |
⊢ ( 𝜑 → 𝑉 = 〈 𝑅 , 𝑀 〉 ) |
6 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
7 |
6 2
|
nat1st2nd |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 Nat 𝐷 ) 〈 ( 1st ‘ 𝑀 ) , ( 2nd ‘ 𝑀 ) 〉 ) ) |
8 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
9 |
8 3
|
nat1st2nd |
⊢ ( 𝜑 → 𝐵 ∈ ( 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ( 𝐷 Nat 𝐸 ) 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ) ) |
10 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
11 |
8
|
natrcl |
⊢ ( 𝐵 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑅 ) → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑅 ∈ ( 𝐷 Func 𝐸 ) ) ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑅 ∈ ( 𝐷 Func 𝐸 ) ) ) |
13 |
12
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |
14 |
|
1st2nd |
⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
15 |
10 13 14
|
sylancr |
⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
16 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
17 |
6
|
natrcl |
⊢ ( 𝐴 ∈ ( 𝐹 ( 𝐶 Nat 𝐷 ) 𝑀 ) → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑀 ∈ ( 𝐶 Func 𝐷 ) ) ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑀 ∈ ( 𝐶 Func 𝐷 ) ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
20 |
|
1st2nd |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
21 |
16 19 20
|
sylancr |
⊢ ( 𝜑 → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
22 |
15 21
|
opeq12d |
⊢ ( 𝜑 → 〈 𝐾 , 𝐹 〉 = 〈 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 , 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 〉 ) |
23 |
4 22
|
eqtrd |
⊢ ( 𝜑 → 𝑈 = 〈 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 , 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 〉 ) |
24 |
12
|
simprd |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐷 Func 𝐸 ) ) |
25 |
|
1st2nd |
⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝑅 ∈ ( 𝐷 Func 𝐸 ) ) → 𝑅 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ) |
26 |
10 24 25
|
sylancr |
⊢ ( 𝜑 → 𝑅 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ) |
27 |
18
|
simprd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐶 Func 𝐷 ) ) |
28 |
|
1st2nd |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑀 ∈ ( 𝐶 Func 𝐷 ) ) → 𝑀 = 〈 ( 1st ‘ 𝑀 ) , ( 2nd ‘ 𝑀 ) 〉 ) |
29 |
16 27 28
|
sylancr |
⊢ ( 𝜑 → 𝑀 = 〈 ( 1st ‘ 𝑀 ) , ( 2nd ‘ 𝑀 ) 〉 ) |
30 |
26 29
|
opeq12d |
⊢ ( 𝜑 → 〈 𝑅 , 𝑀 〉 = 〈 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 , 〈 ( 1st ‘ 𝑀 ) , ( 2nd ‘ 𝑀 ) 〉 〉 ) |
31 |
5 30
|
eqtrd |
⊢ ( 𝜑 → 𝑉 = 〈 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 , 〈 ( 1st ‘ 𝑀 ) , ( 2nd ‘ 𝑀 ) 〉 〉 ) |
32 |
1 7 9 23 31
|
fuco22natlem |
⊢ ( 𝜑 → ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ∈ ( ( 𝑂 ‘ 𝑈 ) ( 𝐶 Nat 𝐸 ) ( 𝑂 ‘ 𝑉 ) ) ) |