| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco22nat.o | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  〈 𝑂 ,  𝑃 〉 )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco22nat.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝐹 ( 𝐶  Nat  𝐷 ) 𝑀 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco22nat.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 𝐾 ( 𝐷  Nat  𝐸 ) 𝑅 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco22nat.u | 
							⊢ ( 𝜑  →  𝑈  =  〈 𝐾 ,  𝐹 〉 )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco22nat.v | 
							⊢ ( 𝜑  →  𝑉  =  〈 𝑅 ,  𝑀 〉 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  Nat  𝐷 )  =  ( 𝐶  Nat  𝐷 )  | 
						
						
							| 7 | 
							
								6 2
							 | 
							nat1st2nd | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 〈 ( 1st  ‘ 𝐹 ) ,  ( 2nd  ‘ 𝐹 ) 〉 ( 𝐶  Nat  𝐷 ) 〈 ( 1st  ‘ 𝑀 ) ,  ( 2nd  ‘ 𝑀 ) 〉 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐷  Nat  𝐸 )  =  ( 𝐷  Nat  𝐸 )  | 
						
						
							| 9 | 
							
								8 3
							 | 
							nat1st2nd | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 〈 ( 1st  ‘ 𝐾 ) ,  ( 2nd  ‘ 𝐾 ) 〉 ( 𝐷  Nat  𝐸 ) 〈 ( 1st  ‘ 𝑅 ) ,  ( 2nd  ‘ 𝑅 ) 〉 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							relfunc | 
							⊢ Rel  ( 𝐷  Func  𝐸 )  | 
						
						
							| 11 | 
							
								8
							 | 
							natrcl | 
							⊢ ( 𝐵  ∈  ( 𝐾 ( 𝐷  Nat  𝐸 ) 𝑅 )  →  ( 𝐾  ∈  ( 𝐷  Func  𝐸 )  ∧  𝑅  ∈  ( 𝐷  Func  𝐸 ) ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐾  ∈  ( 𝐷  Func  𝐸 )  ∧  𝑅  ∈  ( 𝐷  Func  𝐸 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐾  ∈  ( 𝐷  Func  𝐸 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							1st2nd | 
							⊢ ( ( Rel  ( 𝐷  Func  𝐸 )  ∧  𝐾  ∈  ( 𝐷  Func  𝐸 ) )  →  𝐾  =  〈 ( 1st  ‘ 𝐾 ) ,  ( 2nd  ‘ 𝐾 ) 〉 )  | 
						
						
							| 15 | 
							
								10 13 14
							 | 
							sylancr | 
							⊢ ( 𝜑  →  𝐾  =  〈 ( 1st  ‘ 𝐾 ) ,  ( 2nd  ‘ 𝐾 ) 〉 )  | 
						
						
							| 16 | 
							
								
							 | 
							relfunc | 
							⊢ Rel  ( 𝐶  Func  𝐷 )  | 
						
						
							| 17 | 
							
								6
							 | 
							natrcl | 
							⊢ ( 𝐴  ∈  ( 𝐹 ( 𝐶  Nat  𝐷 ) 𝑀 )  →  ( 𝐹  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑀  ∈  ( 𝐶  Func  𝐷 ) ) )  | 
						
						
							| 18 | 
							
								2 17
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑀  ∈  ( 𝐶  Func  𝐷 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							1st2nd | 
							⊢ ( ( Rel  ( 𝐶  Func  𝐷 )  ∧  𝐹  ∈  ( 𝐶  Func  𝐷 ) )  →  𝐹  =  〈 ( 1st  ‘ 𝐹 ) ,  ( 2nd  ‘ 𝐹 ) 〉 )  | 
						
						
							| 21 | 
							
								16 19 20
							 | 
							sylancr | 
							⊢ ( 𝜑  →  𝐹  =  〈 ( 1st  ‘ 𝐹 ) ,  ( 2nd  ‘ 𝐹 ) 〉 )  | 
						
						
							| 22 | 
							
								15 21
							 | 
							opeq12d | 
							⊢ ( 𝜑  →  〈 𝐾 ,  𝐹 〉  =  〈 〈 ( 1st  ‘ 𝐾 ) ,  ( 2nd  ‘ 𝐾 ) 〉 ,  〈 ( 1st  ‘ 𝐹 ) ,  ( 2nd  ‘ 𝐹 ) 〉 〉 )  | 
						
						
							| 23 | 
							
								4 22
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  𝑈  =  〈 〈 ( 1st  ‘ 𝐾 ) ,  ( 2nd  ‘ 𝐾 ) 〉 ,  〈 ( 1st  ‘ 𝐹 ) ,  ( 2nd  ‘ 𝐹 ) 〉 〉 )  | 
						
						
							| 24 | 
							
								12
							 | 
							simprd | 
							⊢ ( 𝜑  →  𝑅  ∈  ( 𝐷  Func  𝐸 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							1st2nd | 
							⊢ ( ( Rel  ( 𝐷  Func  𝐸 )  ∧  𝑅  ∈  ( 𝐷  Func  𝐸 ) )  →  𝑅  =  〈 ( 1st  ‘ 𝑅 ) ,  ( 2nd  ‘ 𝑅 ) 〉 )  | 
						
						
							| 26 | 
							
								10 24 25
							 | 
							sylancr | 
							⊢ ( 𝜑  →  𝑅  =  〈 ( 1st  ‘ 𝑅 ) ,  ( 2nd  ‘ 𝑅 ) 〉 )  | 
						
						
							| 27 | 
							
								18
							 | 
							simprd | 
							⊢ ( 𝜑  →  𝑀  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							1st2nd | 
							⊢ ( ( Rel  ( 𝐶  Func  𝐷 )  ∧  𝑀  ∈  ( 𝐶  Func  𝐷 ) )  →  𝑀  =  〈 ( 1st  ‘ 𝑀 ) ,  ( 2nd  ‘ 𝑀 ) 〉 )  | 
						
						
							| 29 | 
							
								16 27 28
							 | 
							sylancr | 
							⊢ ( 𝜑  →  𝑀  =  〈 ( 1st  ‘ 𝑀 ) ,  ( 2nd  ‘ 𝑀 ) 〉 )  | 
						
						
							| 30 | 
							
								26 29
							 | 
							opeq12d | 
							⊢ ( 𝜑  →  〈 𝑅 ,  𝑀 〉  =  〈 〈 ( 1st  ‘ 𝑅 ) ,  ( 2nd  ‘ 𝑅 ) 〉 ,  〈 ( 1st  ‘ 𝑀 ) ,  ( 2nd  ‘ 𝑀 ) 〉 〉 )  | 
						
						
							| 31 | 
							
								5 30
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  𝑉  =  〈 〈 ( 1st  ‘ 𝑅 ) ,  ( 2nd  ‘ 𝑅 ) 〉 ,  〈 ( 1st  ‘ 𝑀 ) ,  ( 2nd  ‘ 𝑀 ) 〉 〉 )  | 
						
						
							| 32 | 
							
								1 7 9 23 31
							 | 
							fuco22natlem | 
							⊢ ( 𝜑  →  ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 )  ∈  ( ( 𝑂 ‘ 𝑈 ) ( 𝐶  Nat  𝐸 ) ( 𝑂 ‘ 𝑉 ) ) )  |