Metamath Proof Explorer


Theorem fuco22nat

Description: The composed natural transformation is a natural transformation. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fuco22nat.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco22nat.a φ A F C Nat D M
fuco22nat.b φ B K D Nat E R
fuco22nat.u φ U = K F
fuco22nat.v φ V = R M
Assertion fuco22nat φ B U P V A O U C Nat E O V

Proof

Step Hyp Ref Expression
1 fuco22nat.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco22nat.a φ A F C Nat D M
3 fuco22nat.b φ B K D Nat E R
4 fuco22nat.u φ U = K F
5 fuco22nat.v φ V = R M
6 eqid C Nat D = C Nat D
7 6 2 nat1st2nd φ A 1 st F 2 nd F C Nat D 1 st M 2 nd M
8 eqid D Nat E = D Nat E
9 8 3 nat1st2nd φ B 1 st K 2 nd K D Nat E 1 st R 2 nd R
10 relfunc Rel D Func E
11 8 natrcl B K D Nat E R K D Func E R D Func E
12 3 11 syl φ K D Func E R D Func E
13 12 simpld φ K D Func E
14 1st2nd Rel D Func E K D Func E K = 1 st K 2 nd K
15 10 13 14 sylancr φ K = 1 st K 2 nd K
16 relfunc Rel C Func D
17 6 natrcl A F C Nat D M F C Func D M C Func D
18 2 17 syl φ F C Func D M C Func D
19 18 simpld φ F C Func D
20 1st2nd Rel C Func D F C Func D F = 1 st F 2 nd F
21 16 19 20 sylancr φ F = 1 st F 2 nd F
22 15 21 opeq12d φ K F = 1 st K 2 nd K 1 st F 2 nd F
23 4 22 eqtrd φ U = 1 st K 2 nd K 1 st F 2 nd F
24 12 simprd φ R D Func E
25 1st2nd Rel D Func E R D Func E R = 1 st R 2 nd R
26 10 24 25 sylancr φ R = 1 st R 2 nd R
27 18 simprd φ M C Func D
28 1st2nd Rel C Func D M C Func D M = 1 st M 2 nd M
29 16 27 28 sylancr φ M = 1 st M 2 nd M
30 26 29 opeq12d φ R M = 1 st R 2 nd R 1 st M 2 nd M
31 5 30 eqtrd φ V = 1 st R 2 nd R 1 st M 2 nd M
32 1 7 9 23 31 fuco22natlem φ B U P V A O U C Nat E O V