Step |
Hyp |
Ref |
Expression |
1 |
|
fuco22natlem.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco22natlem.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
3 |
|
fuco22natlem.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ) |
4 |
|
fuco22natlem.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
5 |
|
fuco22natlem.v |
⊢ ( 𝜑 → 𝑉 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
6 |
|
eqid |
⊢ ( 𝐶 Nat 𝐸 ) = ( 𝐶 Nat 𝐸 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
10 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
11 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
12 |
11 2
|
natrcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
13 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
14 |
13 3
|
natrcl2 |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
15 |
1 12 14 4 7
|
fuco11a |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑈 ) = 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) 〉 ) |
16 |
1 12 14 4
|
fuco11cl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑈 ) ∈ ( 𝐶 Func 𝐸 ) ) |
17 |
15 16
|
eqeltrrd |
⊢ ( 𝜑 → 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
18 |
|
df-br |
⊢ ( ( 𝐾 ∘ 𝐹 ) ( 𝐶 Func 𝐸 ) ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) ↔ 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
19 |
17 18
|
sylibr |
⊢ ( 𝜑 → ( 𝐾 ∘ 𝐹 ) ( 𝐶 Func 𝐸 ) ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) ) |
20 |
11 2
|
natrcl3 |
⊢ ( 𝜑 → 𝑀 ( 𝐶 Func 𝐷 ) 𝑁 ) |
21 |
13 3
|
natrcl3 |
⊢ ( 𝜑 → 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 ) |
22 |
1 20 21 5 7
|
fuco11a |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑉 ) = 〈 ( 𝑅 ∘ 𝑀 ) , ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) 〉 ) |
23 |
1 20 21 5
|
fuco11cl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑉 ) ∈ ( 𝐶 Func 𝐸 ) ) |
24 |
22 23
|
eqeltrrd |
⊢ ( 𝜑 → 〈 ( 𝑅 ∘ 𝑀 ) , ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
25 |
|
df-br |
⊢ ( ( 𝑅 ∘ 𝑀 ) ( 𝐶 Func 𝐸 ) ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) ↔ 〈 ( 𝑅 ∘ 𝑀 ) , ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
26 |
24 25
|
sylibr |
⊢ ( 𝜑 → ( 𝑅 ∘ 𝑀 ) ( 𝐶 Func 𝐸 ) ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) ) |
27 |
1 4 5 2 3
|
fucofn22 |
⊢ ( 𝜑 → ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) Fn ( Base ‘ 𝐶 ) ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
29 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
30 |
29
|
funcrcl3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐸 ∈ Cat ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
32 |
31 28 29
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐾 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
33 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
34 |
7 31 33
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
36 |
34 35
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
37 |
32 36
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐸 ) ) |
38 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑀 ( 𝐶 Func 𝐷 ) 𝑁 ) |
39 |
7 31 38
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑀 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
40 |
39 35
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑀 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
41 |
32 40
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐸 ) ) |
42 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 ) |
43 |
31 28 42
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
44 |
43 40
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐸 ) ) |
45 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
46 |
31 45 9 29 36 40
|
funcf2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) : ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑥 ) ) ⟶ ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
47 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
48 |
11 47 7 45 35
|
natcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑥 ) ) ) |
49 |
46 48
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ∈ ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
50 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐵 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ) |
51 |
7 31 20
|
funcf1 |
⊢ ( 𝜑 → 𝑀 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
52 |
51
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑀 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
53 |
13 50 31 9 52
|
natcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ∈ ( ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
54 |
28 9 10 30 37 41 44 49 53
|
catcocl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∈ ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
55 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
56 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
57 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑉 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
58 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
59 |
55 56 57 47 50 35 58
|
fuco23 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑥 ) = ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝑀 ‘ 𝑥 ) ) ‘ ( 𝐴 ‘ 𝑥 ) ) ) ) |
60 |
34 35
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
61 |
39 35
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) |
62 |
60 61
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑥 ) ) = ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
63 |
54 59 62
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑥 ) ∈ ( ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑥 ) ) ) |
64 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
65 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
66 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
67 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
68 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐵 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ) |
69 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
70 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
71 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑉 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
72 |
64 65 66 67 68 69 70 71
|
fuco22natlem3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑦 ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) , ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑦 ) ) ( ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ‘ ℎ ) ) = ( ( ( ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑦 ) ) ∘ ( 𝑥 𝑁 𝑦 ) ) ‘ ℎ ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) , ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑦 ) ) ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑥 ) ) ) |
73 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
74 |
73
|
oveq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ) |
75 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐺 𝑤 ) = ( 𝑥 𝐺 𝑤 ) ) |
76 |
74 75
|
coeq12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑥 𝐺 𝑤 ) ) ) |
77 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ) |
78 |
77
|
oveq2d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ) |
79 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 𝐺 𝑤 ) = ( 𝑥 𝐺 𝑦 ) ) |
80 |
78 79
|
coeq12d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑥 𝐺 𝑤 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) |
81 |
|
eqid |
⊢ ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) |
82 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∈ V |
83 |
|
ovex |
⊢ ( 𝑥 𝐺 𝑦 ) ∈ V |
84 |
82 83
|
coex |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ∈ V |
85 |
76 80 81 84
|
ovmpo |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) 𝑦 ) = ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) |
86 |
85
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑥 ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) 𝑦 ) = ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) |
87 |
86
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) 𝑦 ) ‘ ℎ ) = ( ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ‘ ℎ ) ) |
88 |
87
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑦 ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) , ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑦 ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) , ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑦 ) ) ( ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ‘ ℎ ) ) ) |
89 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑀 ‘ 𝑧 ) = ( 𝑀 ‘ 𝑥 ) ) |
90 |
89
|
oveq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) = ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ) |
91 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝑁 𝑤 ) = ( 𝑥 𝑁 𝑤 ) ) |
92 |
90 91
|
coeq12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) = ( ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑥 𝑁 𝑤 ) ) ) |
93 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑀 ‘ 𝑤 ) = ( 𝑀 ‘ 𝑦 ) ) |
94 |
93
|
oveq2d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) = ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑦 ) ) ) |
95 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 𝑁 𝑤 ) = ( 𝑥 𝑁 𝑦 ) ) |
96 |
94 95
|
coeq12d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑥 𝑁 𝑤 ) ) = ( ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑦 ) ) ∘ ( 𝑥 𝑁 𝑦 ) ) ) |
97 |
|
eqid |
⊢ ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) |
98 |
|
ovex |
⊢ ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑦 ) ) ∈ V |
99 |
|
ovex |
⊢ ( 𝑥 𝑁 𝑦 ) ∈ V |
100 |
98 99
|
coex |
⊢ ( ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑦 ) ) ∘ ( 𝑥 𝑁 𝑦 ) ) ∈ V |
101 |
92 96 97 100
|
ovmpo |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) 𝑦 ) = ( ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑦 ) ) ∘ ( 𝑥 𝑁 𝑦 ) ) ) |
102 |
101
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑥 ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) 𝑦 ) = ( ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑦 ) ) ∘ ( 𝑥 𝑁 𝑦 ) ) ) |
103 |
102
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) 𝑦 ) ‘ ℎ ) = ( ( ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑦 ) ) ∘ ( 𝑥 𝑁 𝑦 ) ) ‘ ℎ ) ) |
104 |
103
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( 𝑥 ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) 𝑦 ) ‘ ℎ ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) , ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑦 ) ) ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑥 ) ) = ( ( ( ( ( 𝑀 ‘ 𝑥 ) 𝑆 ( 𝑀 ‘ 𝑦 ) ) ∘ ( 𝑥 𝑁 𝑦 ) ) ‘ ℎ ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) , ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑦 ) ) ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑥 ) ) ) |
105 |
72 88 104
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑦 ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) , ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) 𝑦 ) ‘ ℎ ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) , ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑦 ) ) ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑥 ) ) ) |
106 |
6 7 8 9 10 19 26 27 63 105
|
isnatd |
⊢ ( 𝜑 → ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ∈ ( 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) 〉 ( 𝐶 Nat 𝐸 ) 〈 ( 𝑅 ∘ 𝑀 ) , ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) 〉 ) ) |
107 |
15 22
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑈 ) ( 𝐶 Nat 𝐸 ) ( 𝑂 ‘ 𝑉 ) ) = ( 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ∘ ( 𝑧 𝐺 𝑤 ) ) ) 〉 ( 𝐶 Nat 𝐸 ) 〈 ( 𝑅 ∘ 𝑀 ) , ( 𝑧 ∈ ( Base ‘ 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑀 ‘ 𝑧 ) 𝑆 ( 𝑀 ‘ 𝑤 ) ) ∘ ( 𝑧 𝑁 𝑤 ) ) ) 〉 ) ) |
108 |
106 107
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ∈ ( ( 𝑂 ‘ 𝑈 ) ( 𝐶 Nat 𝐸 ) ( 𝑂 ‘ 𝑉 ) ) ) |