| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco22natlem1.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco22natlem1.y | 
							⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco22natlem1.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 ( 𝐶  Nat  𝐷 ) 〈 𝑀 ,  𝑁 〉 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco22natlem1.h | 
							⊢ ( 𝜑  →  𝐻  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco22natlem2.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 〈 𝐾 ,  𝐿 〉 ( 𝐷  Nat  𝐸 ) 〈 𝑅 ,  𝑆 〉 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco22natlem3.o | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  〈 𝑂 ,  𝑃 〉 )  | 
						
						
							| 7 | 
							
								
							 | 
							fuco22natlem3.u | 
							⊢ ( 𝜑  →  𝑈  =  〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 )  | 
						
						
							| 8 | 
							
								
							 | 
							fuco22natlem3.v | 
							⊢ ( 𝜑  →  𝑉  =  〈 〈 𝑅 ,  𝑆 〉 ,  〈 𝑀 ,  𝑁 〉 〉 )  | 
						
						
							| 9 | 
							
								1 2 3 4 5
							 | 
							fuco22natlem2 | 
							⊢ ( 𝜑  →  ( ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) )  =  ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  Nat  𝐷 )  =  ( 𝐶  Nat  𝐷 )  | 
						
						
							| 13 | 
							
								12 3
							 | 
							natrcl2 | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 14 | 
							
								10 11 13
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 15 | 
							
								14 1
							 | 
							fvco3d | 
							⊢ ( 𝜑  →  ( ( 𝐾  ∘  𝐹 ) ‘ 𝑋 )  =  ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 16 | 
							
								14 2
							 | 
							fvco3d | 
							⊢ ( 𝜑  →  ( ( 𝐾  ∘  𝐹 ) ‘ 𝑌 )  =  ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							opeq12d | 
							⊢ ( 𝜑  →  〈 ( ( 𝐾  ∘  𝐹 ) ‘ 𝑋 ) ,  ( ( 𝐾  ∘  𝐹 ) ‘ 𝑌 ) 〉  =  〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 )  | 
						
						
							| 18 | 
							
								12 3
							 | 
							natrcl3 | 
							⊢ ( 𝜑  →  𝑀 ( 𝐶  Func  𝐷 ) 𝑁 )  | 
						
						
							| 19 | 
							
								10 11 18
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  𝑀 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 20 | 
							
								19 2
							 | 
							fvco3d | 
							⊢ ( 𝜑  →  ( ( 𝑅  ∘  𝑀 ) ‘ 𝑌 )  =  ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							oveq12d | 
							⊢ ( 𝜑  →  ( 〈 ( ( 𝐾  ∘  𝐹 ) ‘ 𝑋 ) ,  ( ( 𝐾  ∘  𝐹 ) ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅  ∘  𝑀 ) ‘ 𝑌 ) )  =  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) )  =  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) )  | 
						
						
							| 23 | 
							
								6 7 8 3 5 2 22
							 | 
							fuco23 | 
							⊢ ( 𝜑  →  ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑌 )  =  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐷 )  =  ( Hom  ‘ 𝐷 )  | 
						
						
							| 26 | 
							
								10 24 25 13 1 2
							 | 
							funcf2 | 
							⊢ ( 𝜑  →  ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom  ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 27 | 
							
								26 4
							 | 
							fvco3d | 
							⊢ ( 𝜑  →  ( ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) )  ∘  ( 𝑋 𝐺 𝑌 ) ) ‘ 𝐻 )  =  ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) )  | 
						
						
							| 28 | 
							
								21 23 27
							 | 
							oveq123d | 
							⊢ ( 𝜑  →  ( ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑌 ) ( 〈 ( ( 𝐾  ∘  𝐹 ) ‘ 𝑋 ) ,  ( ( 𝐾  ∘  𝐹 ) ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅  ∘  𝑀 ) ‘ 𝑌 ) ) ( ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) )  ∘  ( 𝑋 𝐺 𝑌 ) ) ‘ 𝐻 ) )  =  ( ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) )  | 
						
						
							| 29 | 
							
								19 1
							 | 
							fvco3d | 
							⊢ ( 𝜑  →  ( ( 𝑅  ∘  𝑀 ) ‘ 𝑋 )  =  ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) )  | 
						
						
							| 30 | 
							
								15 29
							 | 
							opeq12d | 
							⊢ ( 𝜑  →  〈 ( ( 𝐾  ∘  𝐹 ) ‘ 𝑋 ) ,  ( ( 𝑅  ∘  𝑀 ) ‘ 𝑋 ) 〉  =  〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 )  | 
						
						
							| 31 | 
							
								30 20
							 | 
							oveq12d | 
							⊢ ( 𝜑  →  ( 〈 ( ( 𝐾  ∘  𝐹 ) ‘ 𝑋 ) ,  ( ( 𝑅  ∘  𝑀 ) ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅  ∘  𝑀 ) ‘ 𝑌 ) )  =  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) )  | 
						
						
							| 32 | 
							
								10 24 25 18 1 2
							 | 
							funcf2 | 
							⊢ ( 𝜑  →  ( 𝑋 𝑁 𝑌 ) : ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝑀 ‘ 𝑋 ) ( Hom  ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) )  | 
						
						
							| 33 | 
							
								32 4
							 | 
							fvco3d | 
							⊢ ( 𝜑  →  ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) )  ∘  ( 𝑋 𝑁 𝑌 ) ) ‘ 𝐻 )  =  ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) )  =  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) )  | 
						
						
							| 35 | 
							
								6 7 8 3 5 1 34
							 | 
							fuco23 | 
							⊢ ( 𝜑  →  ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 )  =  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) )  | 
						
						
							| 36 | 
							
								31 33 35
							 | 
							oveq123d | 
							⊢ ( 𝜑  →  ( ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) )  ∘  ( 𝑋 𝑁 𝑌 ) ) ‘ 𝐻 ) ( 〈 ( ( 𝐾  ∘  𝐹 ) ‘ 𝑋 ) ,  ( ( 𝑅  ∘  𝑀 ) ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅  ∘  𝑀 ) ‘ 𝑌 ) ) ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) )  =  ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 37 | 
							
								9 28 36
							 | 
							3eqtr4d | 
							⊢ ( 𝜑  →  ( ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑌 ) ( 〈 ( ( 𝐾  ∘  𝐹 ) ‘ 𝑋 ) ,  ( ( 𝐾  ∘  𝐹 ) ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅  ∘  𝑀 ) ‘ 𝑌 ) ) ( ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) )  ∘  ( 𝑋 𝐺 𝑌 ) ) ‘ 𝐻 ) )  =  ( ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) )  ∘  ( 𝑋 𝑁 𝑌 ) ) ‘ 𝐻 ) ( 〈 ( ( 𝐾  ∘  𝐹 ) ‘ 𝑋 ) ,  ( ( 𝑅  ∘  𝑀 ) ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅  ∘  𝑀 ) ‘ 𝑌 ) ) ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) ) )  |