Step |
Hyp |
Ref |
Expression |
1 |
|
fuco22natlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
2 |
|
fuco22natlem1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
3 |
|
fuco22natlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
4 |
|
fuco22natlem1.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
5 |
|
fuco22natlem2.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ) |
6 |
|
fuco22natlem3.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
7 |
|
fuco22natlem3.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
8 |
|
fuco22natlem3.v |
⊢ ( 𝜑 → 𝑉 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
9 |
1 2 3 4 5
|
fuco22natlem2 |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
12 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
13 |
12 3
|
natrcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
14 |
10 11 13
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
15 |
14 1
|
fvco3d |
⊢ ( 𝜑 → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
16 |
14 2
|
fvco3d |
⊢ ( 𝜑 → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑌 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ) |
17 |
15 16
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) , ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑌 ) 〉 = 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ) |
18 |
12 3
|
natrcl3 |
⊢ ( 𝜑 → 𝑀 ( 𝐶 Func 𝐷 ) 𝑁 ) |
19 |
10 11 18
|
funcf1 |
⊢ ( 𝜑 → 𝑀 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
20 |
19 2
|
fvco3d |
⊢ ( 𝜑 → ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑌 ) = ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) |
21 |
17 20
|
oveq12d |
⊢ ( 𝜑 → ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) , ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑌 ) ) = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
22 |
|
eqidd |
⊢ ( 𝜑 → ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
23 |
6 7 8 3 5 2 22
|
fuco23 |
⊢ ( 𝜑 → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑌 ) = ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ) ) |
24 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
25 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
26 |
10 24 25 13 1 2
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
27 |
26 4
|
fvco3d |
⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) ‘ 𝐻 ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
28 |
21 23 27
|
oveq123d |
⊢ ( 𝜑 → ( ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑌 ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) , ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑌 ) ) ( ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) ‘ 𝐻 ) ) = ( ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
29 |
19 1
|
fvco3d |
⊢ ( 𝜑 → ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑋 ) = ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) |
30 |
15 29
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) , ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑋 ) 〉 = 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ) |
31 |
30 20
|
oveq12d |
⊢ ( 𝜑 → ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) , ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑌 ) ) = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
32 |
10 24 25 18 1 2
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝑀 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ) |
33 |
32 4
|
fvco3d |
⊢ ( 𝜑 → ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ∘ ( 𝑋 𝑁 𝑌 ) ) ‘ 𝐻 ) = ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ) |
34 |
|
eqidd |
⊢ ( 𝜑 → ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
35 |
6 7 8 3 5 1 34
|
fuco23 |
⊢ ( 𝜑 → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) = ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
36 |
31 33 35
|
oveq123d |
⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ∘ ( 𝑋 𝑁 𝑌 ) ) ‘ 𝐻 ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) , ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑌 ) ) ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) ) = ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) ) |
37 |
9 28 36
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑌 ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) , ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑌 ) ) ( ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) ‘ 𝐻 ) ) = ( ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ∘ ( 𝑋 𝑁 𝑌 ) ) ‘ 𝐻 ) ( 〈 ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑋 ) , ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( ( 𝑅 ∘ 𝑀 ) ‘ 𝑌 ) ) ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) ) ) |