| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco22natlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 2 |
|
fuco22natlem1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 3 |
|
fuco22natlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
| 4 |
|
fuco22natlem1.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 5 |
|
fuco22natlem2.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 7 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 8 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
| 9 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
| 10 |
9 5
|
natrcl2 |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 11 |
10
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 13 |
12 6 10
|
funcf1 |
⊢ ( 𝜑 → 𝐾 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 15 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
| 16 |
15 3
|
natrcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 17 |
14 12 16
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 18 |
17 1
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 19 |
13 18
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) ) |
| 20 |
17 2
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) ) |
| 21 |
13 20
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐸 ) ) |
| 22 |
15 3
|
natrcl3 |
⊢ ( 𝜑 → 𝑀 ( 𝐶 Func 𝐷 ) 𝑁 ) |
| 23 |
14 12 22
|
funcf1 |
⊢ ( 𝜑 → 𝑀 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 24 |
23 2
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) ) |
| 25 |
13 24
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐸 ) ) |
| 26 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 27 |
12 26 7 10 18 20
|
funcf2 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ⟶ ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 28 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 29 |
14 28 26 16 1 2
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 30 |
29 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ∈ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 31 |
27 30
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ∈ ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 32 |
12 26 7 10 20 24
|
funcf2 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ⟶ ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
| 33 |
15 3 14 26 2
|
natcl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑌 ) ∈ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ) |
| 34 |
32 33
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ∈ ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
| 35 |
9 5
|
natrcl3 |
⊢ ( 𝜑 → 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 ) |
| 36 |
12 6 35
|
funcf1 |
⊢ ( 𝜑 → 𝑅 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 37 |
36 24
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐸 ) ) |
| 38 |
9 5 12 7 24
|
natcl |
⊢ ( 𝜑 → ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ∈ ( ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
| 39 |
6 7 8 11 19 21 25 31 34 37 38
|
catass |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) ) |
| 40 |
1 2 3 4 10
|
fuco22natlem1 |
⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) = ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) ) |
| 42 |
23 1
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 43 |
14 28 26 22 1 2
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝑀 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ) |
| 44 |
43 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ∈ ( ( 𝑀 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ) |
| 45 |
9 5 12 26 8 42 24 44
|
nati |
⊢ ( 𝜑 → ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 46 |
45
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 47 |
13 42
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) ) |
| 48 |
12 26 7 10 18 42
|
funcf2 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) : ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑋 ) ) ⟶ ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 49 |
15 3 14 26 1
|
natcl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑋 ) ) ) |
| 50 |
48 49
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ∈ ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 51 |
12 26 7 10 42 24
|
funcf2 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) : ( ( 𝑀 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ⟶ ( ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
| 52 |
51 44
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ∈ ( ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
| 53 |
6 7 8 11 19 47 25 50 52 37 38
|
catass |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) ) |
| 54 |
36 42
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) ) |
| 55 |
9 5 12 7 42
|
natcl |
⊢ ( 𝜑 → ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ∈ ( ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 56 |
12 26 7 35 42 24
|
funcf2 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) : ( ( 𝑀 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ⟶ ( ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
| 57 |
56 44
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ∈ ( ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
| 58 |
6 7 8 11 19 47 54 50 55 37 57
|
catass |
⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) ) |
| 59 |
46 53 58
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) = ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) ) |
| 60 |
39 41 59
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( ( 𝑀 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) ) |