Metamath Proof Explorer


Theorem fuco22natlem1

Description: Lemma for fuco22nat . The commutative square of natural transformation A in category D , mapped to category E by the morphism part L of the functor. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco22natlem1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
fuco22natlem1.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
fuco22natlem1.a ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐶 Nat 𝐷 ) ⟨ 𝑀 , 𝑁 ⟩ ) )
fuco22natlem1.h ( 𝜑𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
fuco22natlem1.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
Assertion fuco22natlem1 ( 𝜑 → ( ( ( ( 𝐹𝑌 ) 𝐿 ( 𝑀𝑌 ) ) ‘ ( 𝐴𝑌 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝐹𝑌 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀𝑌 ) ) ) ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( ( 𝑀𝑋 ) 𝐿 ( 𝑀𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝑀𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀𝑌 ) ) ) ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 fuco22natlem1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
2 fuco22natlem1.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
3 fuco22natlem1.a ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐶 Nat 𝐷 ) ⟨ 𝑀 , 𝑁 ⟩ ) )
4 fuco22natlem1.h ( 𝜑𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
5 fuco22natlem1.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
6 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
7 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
8 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
9 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
10 6 3 7 8 9 1 2 4 nati ( 𝜑 → ( ( 𝐴𝑌 ) ( ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑀𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ( ⟨ ( 𝐹𝑋 ) , ( 𝑀𝑋 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑀𝑌 ) ) ( 𝐴𝑋 ) ) )
11 10 fveq2d ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑌 ) ) ‘ ( ( 𝐴𝑌 ) ( ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑀𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑌 ) ) ‘ ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ( ⟨ ( 𝐹𝑋 ) , ( 𝑀𝑋 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑀𝑌 ) ) ( 𝐴𝑋 ) ) ) )
12 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
13 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
14 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
15 6 3 natrcl2 ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
16 7 12 15 funcf1 ( 𝜑𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
17 16 1 ffvelcdmd ( 𝜑 → ( 𝐹𝑋 ) ∈ ( Base ‘ 𝐷 ) )
18 16 2 ffvelcdmd ( 𝜑 → ( 𝐹𝑌 ) ∈ ( Base ‘ 𝐷 ) )
19 6 3 natrcl3 ( 𝜑𝑀 ( 𝐶 Func 𝐷 ) 𝑁 )
20 7 12 19 funcf1 ( 𝜑𝑀 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
21 20 2 ffvelcdmd ( 𝜑 → ( 𝑀𝑌 ) ∈ ( Base ‘ 𝐷 ) )
22 7 8 13 15 1 2 funcf2 ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝐹𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑌 ) ) )
23 22 4 ffvelcdmd ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ∈ ( ( 𝐹𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑌 ) ) )
24 6 3 7 13 2 natcl ( 𝜑 → ( 𝐴𝑌 ) ∈ ( ( 𝐹𝑌 ) ( Hom ‘ 𝐷 ) ( 𝑀𝑌 ) ) )
25 12 13 9 14 5 17 18 21 23 24 funcco ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑌 ) ) ‘ ( ( 𝐴𝑌 ) ( ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑀𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( ( 𝐹𝑌 ) 𝐿 ( 𝑀𝑌 ) ) ‘ ( 𝐴𝑌 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝐹𝑌 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀𝑌 ) ) ) ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) )
26 20 1 ffvelcdmd ( 𝜑 → ( 𝑀𝑋 ) ∈ ( Base ‘ 𝐷 ) )
27 6 3 7 13 1 natcl ( 𝜑 → ( 𝐴𝑋 ) ∈ ( ( 𝐹𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀𝑋 ) ) )
28 7 8 13 19 1 2 funcf2 ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝑀𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀𝑌 ) ) )
29 28 4 ffvelcdmd ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ∈ ( ( 𝑀𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀𝑌 ) ) )
30 12 13 9 14 5 17 26 21 27 29 funcco ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑌 ) ) ‘ ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ( ⟨ ( 𝐹𝑋 ) , ( 𝑀𝑋 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑀𝑌 ) ) ( 𝐴𝑋 ) ) ) = ( ( ( ( 𝑀𝑋 ) 𝐿 ( 𝑀𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝑀𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀𝑌 ) ) ) ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ) )
31 11 25 30 3eqtr3d ( 𝜑 → ( ( ( ( 𝐹𝑌 ) 𝐿 ( 𝑀𝑌 ) ) ‘ ( 𝐴𝑌 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝐹𝑌 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀𝑌 ) ) ) ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( ( 𝑀𝑋 ) 𝐿 ( 𝑀𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝑀𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀𝑌 ) ) ) ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ) )