| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco22natlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 2 |
|
fuco22natlem1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 3 |
|
fuco22natlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
| 4 |
|
fuco22natlem1.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 5 |
|
fuco22natlem1.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 6 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 9 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 10 |
6 3 7 8 9 1 2 4
|
nati |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝑀 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝑀 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 13 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 14 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
| 15 |
6 3
|
natrcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 16 |
7 12 15
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 17 |
16 1
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 18 |
16 2
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) ) |
| 19 |
6 3
|
natrcl3 |
⊢ ( 𝜑 → 𝑀 ( 𝐶 Func 𝐷 ) 𝑁 ) |
| 20 |
7 12 19
|
funcf1 |
⊢ ( 𝜑 → 𝑀 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 21 |
20 2
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) ) |
| 22 |
7 8 13 15 1 2
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 23 |
22 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ∈ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 24 |
6 3 7 13 2
|
natcl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑌 ) ∈ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ) |
| 25 |
12 13 9 14 5 17 18 21 23 24
|
funcco |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 26 |
20 1
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 27 |
6 3 7 13 1
|
natcl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑋 ) ) ) |
| 28 |
7 8 13 19 1 2
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝑀 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ) |
| 29 |
28 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ∈ ( ( 𝑀 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ) |
| 30 |
12 13 9 14 5 17 26 21 27 29
|
funcco |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝑀 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝑀 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) = ( ( ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 31 |
11 25 30
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝑌 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝐴 ‘ 𝑌 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑌 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) = ( ( ( ( 𝑀 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐻 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝑀 ‘ 𝑌 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |