| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco23a.a | 
							 |-  ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco23a.b | 
							 |-  ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco23a.x | 
							 |-  ( ph -> X e. ( Base ` C ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco23a.p | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco23a.u | 
							 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco23a.v | 
							 |-  ( ph -> V = <. <. R , S >. , <. M , N >. >. )  | 
						
						
							| 7 | 
							
								
							 | 
							fuco23a.o | 
							 |-  ( ph -> .* = ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` E ) = ( comp ` E )  | 
						
						
							| 9 | 
							
								1 2 3 8
							 | 
							fuco23alem | 
							 |-  ( ph -> ( ( B ` ( M ` X ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( B ` ( F ` X ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) = ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) )  | 
						
						
							| 11 | 
							
								4 5 6 1 2 3 10
							 | 
							fuco23 | 
							 |-  ( ph -> ( ( B ( U P V ) A ) ` X ) = ( ( B ` ( M ` X ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) )  | 
						
						
							| 12 | 
							
								7
							 | 
							oveqd | 
							 |-  ( ph -> ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) .* ( B ` ( F ` X ) ) ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( B ` ( F ` X ) ) ) )  | 
						
						
							| 13 | 
							
								9 11 12
							 | 
							3eqtr4d | 
							 |-  ( ph -> ( ( B ( U P V ) A ) ` X ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) .* ( B ` ( F ` X ) ) ) )  |