Step |
Hyp |
Ref |
Expression |
1 |
|
fuco23a.a |
|- ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) ) |
2 |
|
fuco23a.b |
|- ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) ) |
3 |
|
fuco23a.x |
|- ( ph -> X e. ( Base ` C ) ) |
4 |
|
fuco23a.p |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
5 |
|
fuco23a.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
6 |
|
fuco23a.v |
|- ( ph -> V = <. <. R , S >. , <. M , N >. >. ) |
7 |
|
fuco23a.o |
|- ( ph -> .* = ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ) |
8 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
9 |
1 2 3 8
|
fuco23alem |
|- ( ph -> ( ( B ` ( M ` X ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( B ` ( F ` X ) ) ) ) |
10 |
|
eqidd |
|- ( ph -> ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) = ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ) |
11 |
4 5 6 1 2 3 10
|
fuco23 |
|- ( ph -> ( ( B ( U P V ) A ) ` X ) = ( ( B ` ( M ` X ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) ) |
12 |
7
|
oveqd |
|- ( ph -> ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) .* ( B ` ( F ` X ) ) ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( B ` ( F ` X ) ) ) ) |
13 |
9 11 12
|
3eqtr4d |
|- ( ph -> ( ( B ( U P V ) A ) ` X ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) .* ( B ` ( F ` X ) ) ) ) |