Metamath Proof Explorer


Theorem fuco23a

Description: The morphism part of the functor composition bifunctor. An alternate definition of o.F . See also fuco23 . (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco23a.a
|- ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) )
fuco23a.b
|- ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) )
fuco23a.x
|- ( ph -> X e. ( Base ` C ) )
fuco23a.p
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
fuco23a.u
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. )
fuco23a.v
|- ( ph -> V = <. <. R , S >. , <. M , N >. >. )
fuco23a.o
|- ( ph -> .* = ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) )
Assertion fuco23a
|- ( ph -> ( ( B ( U P V ) A ) ` X ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) .* ( B ` ( F ` X ) ) ) )

Proof

Step Hyp Ref Expression
1 fuco23a.a
 |-  ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) )
2 fuco23a.b
 |-  ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) )
3 fuco23a.x
 |-  ( ph -> X e. ( Base ` C ) )
4 fuco23a.p
 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )
5 fuco23a.u
 |-  ( ph -> U = <. <. K , L >. , <. F , G >. >. )
6 fuco23a.v
 |-  ( ph -> V = <. <. R , S >. , <. M , N >. >. )
7 fuco23a.o
 |-  ( ph -> .* = ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) )
8 eqid
 |-  ( comp ` E ) = ( comp ` E )
9 1 2 3 8 fuco23alem
 |-  ( ph -> ( ( B ` ( M ` X ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( B ` ( F ` X ) ) ) )
10 eqidd
 |-  ( ph -> ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) = ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) )
11 4 5 6 1 2 3 10 fuco23
 |-  ( ph -> ( ( B ( U P V ) A ) ` X ) = ( ( B ` ( M ` X ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) )
12 7 oveqd
 |-  ( ph -> ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) .* ( B ` ( F ` X ) ) ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. ( comp ` E ) ( R ` ( M ` X ) ) ) ( B ` ( F ` X ) ) ) )
13 9 11 12 3eqtr4d
 |-  ( ph -> ( ( B ( U P V ) A ) ` X ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) .* ( B ` ( F ` X ) ) ) )