| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco23a.a | 
							 |-  ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco23a.b | 
							 |-  ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco23a.x | 
							 |-  ( ph -> X e. ( Base ` C ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco23alem.o | 
							 |-  .x. = ( comp ` E )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( D Nat E ) = ( D Nat E )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` D ) = ( Base ` D )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` D ) = ( Hom ` D )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( C Nat D ) = ( C Nat D )  | 
						
						
							| 10 | 
							
								9 1
							 | 
							natrcl2 | 
							 |-  ( ph -> F ( C Func D ) G )  | 
						
						
							| 11 | 
							
								8 6 10
							 | 
							funcf1 | 
							 |-  ( ph -> F : ( Base ` C ) --> ( Base ` D ) )  | 
						
						
							| 12 | 
							
								11 3
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( F ` X ) e. ( Base ` D ) )  | 
						
						
							| 13 | 
							
								9 1
							 | 
							natrcl3 | 
							 |-  ( ph -> M ( C Func D ) N )  | 
						
						
							| 14 | 
							
								8 6 13
							 | 
							funcf1 | 
							 |-  ( ph -> M : ( Base ` C ) --> ( Base ` D ) )  | 
						
						
							| 15 | 
							
								14 3
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( M ` X ) e. ( Base ` D ) )  | 
						
						
							| 16 | 
							
								9 1 8 7 3
							 | 
							natcl | 
							 |-  ( ph -> ( A ` X ) e. ( ( F ` X ) ( Hom ` D ) ( M ` X ) ) )  | 
						
						
							| 17 | 
							
								5 2 6 7 4 12 15 16
							 | 
							nati | 
							 |-  ( ph -> ( ( B ` ( M ` X ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. .x. ( R ` ( M ` X ) ) ) ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. .x. ( R ` ( M ` X ) ) ) ( B ` ( F ` X ) ) ) )  |