Step |
Hyp |
Ref |
Expression |
1 |
|
fuco23a.a |
|- ( ph -> A e. ( <. F , G >. ( C Nat D ) <. M , N >. ) ) |
2 |
|
fuco23a.b |
|- ( ph -> B e. ( <. K , L >. ( D Nat E ) <. R , S >. ) ) |
3 |
|
fuco23a.x |
|- ( ph -> X e. ( Base ` C ) ) |
4 |
|
fuco23alem.o |
|- .x. = ( comp ` E ) |
5 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
6 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
7 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
9 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
10 |
9 1
|
natrcl2 |
|- ( ph -> F ( C Func D ) G ) |
11 |
8 6 10
|
funcf1 |
|- ( ph -> F : ( Base ` C ) --> ( Base ` D ) ) |
12 |
11 3
|
ffvelcdmd |
|- ( ph -> ( F ` X ) e. ( Base ` D ) ) |
13 |
9 1
|
natrcl3 |
|- ( ph -> M ( C Func D ) N ) |
14 |
8 6 13
|
funcf1 |
|- ( ph -> M : ( Base ` C ) --> ( Base ` D ) ) |
15 |
14 3
|
ffvelcdmd |
|- ( ph -> ( M ` X ) e. ( Base ` D ) ) |
16 |
9 1 8 7 3
|
natcl |
|- ( ph -> ( A ` X ) e. ( ( F ` X ) ( Hom ` D ) ( M ` X ) ) ) |
17 |
5 2 6 7 4 12 15 16
|
nati |
|- ( ph -> ( ( B ` ( M ` X ) ) ( <. ( K ` ( F ` X ) ) , ( K ` ( M ` X ) ) >. .x. ( R ` ( M ` X ) ) ) ( ( ( F ` X ) L ( M ` X ) ) ` ( A ` X ) ) ) = ( ( ( ( F ` X ) S ( M ` X ) ) ` ( A ` X ) ) ( <. ( K ` ( F ` X ) ) , ( R ` ( F ` X ) ) >. .x. ( R ` ( M ` X ) ) ) ( B ` ( F ` X ) ) ) ) |