Metamath Proof Explorer


Theorem fuco23alem

Description: The naturality property ( nati ) in category E . (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco23a.a ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐶 Nat 𝐷 ) ⟨ 𝑀 , 𝑁 ⟩ ) )
fuco23a.b ( 𝜑𝐵 ∈ ( ⟨ 𝐾 , 𝐿 ⟩ ( 𝐷 Nat 𝐸 ) ⟨ 𝑅 , 𝑆 ⟩ ) )
fuco23a.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
fuco23alem.o · = ( comp ‘ 𝐸 )
Assertion fuco23alem ( 𝜑 → ( ( 𝐵 ‘ ( 𝑀𝑋 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝑀𝑋 ) ) ⟩ · ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ) = ( ( ( ( 𝐹𝑋 ) 𝑆 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝑅 ‘ ( 𝐹𝑋 ) ) ⟩ · ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) ( 𝐵 ‘ ( 𝐹𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 fuco23a.a ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐶 Nat 𝐷 ) ⟨ 𝑀 , 𝑁 ⟩ ) )
2 fuco23a.b ( 𝜑𝐵 ∈ ( ⟨ 𝐾 , 𝐿 ⟩ ( 𝐷 Nat 𝐸 ) ⟨ 𝑅 , 𝑆 ⟩ ) )
3 fuco23a.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
4 fuco23alem.o · = ( comp ‘ 𝐸 )
5 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
6 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
7 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
8 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
9 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
10 9 1 natrcl2 ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
11 8 6 10 funcf1 ( 𝜑𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
12 11 3 ffvelcdmd ( 𝜑 → ( 𝐹𝑋 ) ∈ ( Base ‘ 𝐷 ) )
13 9 1 natrcl3 ( 𝜑𝑀 ( 𝐶 Func 𝐷 ) 𝑁 )
14 8 6 13 funcf1 ( 𝜑𝑀 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
15 14 3 ffvelcdmd ( 𝜑 → ( 𝑀𝑋 ) ∈ ( Base ‘ 𝐷 ) )
16 9 1 8 7 3 natcl ( 𝜑 → ( 𝐴𝑋 ) ∈ ( ( 𝐹𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀𝑋 ) ) )
17 5 2 6 7 4 12 15 16 nati ( 𝜑 → ( ( 𝐵 ‘ ( 𝑀𝑋 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝑀𝑋 ) ) ⟩ · ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ) = ( ( ( ( 𝐹𝑋 ) 𝑆 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝑅 ‘ ( 𝐹𝑋 ) ) ⟩ · ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) ( 𝐵 ‘ ( 𝐹𝑋 ) ) ) )