| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco23a.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
| 2 |
|
fuco23a.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ) |
| 3 |
|
fuco23a.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 4 |
|
fuco23alem.o |
⊢ · = ( comp ‘ 𝐸 ) |
| 5 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 7 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 9 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
| 10 |
9 1
|
natrcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 11 |
8 6 10
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 12 |
11 3
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 13 |
9 1
|
natrcl3 |
⊢ ( 𝜑 → 𝑀 ( 𝐶 Func 𝐷 ) 𝑁 ) |
| 14 |
8 6 13
|
funcf1 |
⊢ ( 𝜑 → 𝑀 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 15 |
14 3
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 16 |
9 1 8 7 3
|
natcl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑀 ‘ 𝑋 ) ) ) |
| 17 |
5 2 6 7 4 12 15 16
|
nati |
⊢ ( 𝜑 → ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 · ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 · ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( 𝐵 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |