| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco23a.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 ( 𝐶  Nat  𝐷 ) 〈 𝑀 ,  𝑁 〉 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco23a.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 〈 𝐾 ,  𝐿 〉 ( 𝐷  Nat  𝐸 ) 〈 𝑅 ,  𝑆 〉 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco23a.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco23alem.o | 
							⊢  ·   =  ( comp ‘ 𝐸 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐷  Nat  𝐸 )  =  ( 𝐷  Nat  𝐸 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐷 )  =  ( Hom  ‘ 𝐷 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  Nat  𝐷 )  =  ( 𝐶  Nat  𝐷 )  | 
						
						
							| 10 | 
							
								9 1
							 | 
							natrcl2 | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 11 | 
							
								8 6 10
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 12 | 
							
								11 3
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐷 ) )  | 
						
						
							| 13 | 
							
								9 1
							 | 
							natrcl3 | 
							⊢ ( 𝜑  →  𝑀 ( 𝐶  Func  𝐷 ) 𝑁 )  | 
						
						
							| 14 | 
							
								8 6 13
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  𝑀 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 15 | 
							
								14 3
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑋 )  ∈  ( Base ‘ 𝐷 ) )  | 
						
						
							| 16 | 
							
								9 1 8 7 3
							 | 
							natcl | 
							⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑋 )  ∈  ( ( 𝐹 ‘ 𝑋 ) ( Hom  ‘ 𝐷 ) ( 𝑀 ‘ 𝑋 ) ) )  | 
						
						
							| 17 | 
							
								5 2 6 7 4 12 15 16
							 | 
							nati | 
							⊢ ( 𝜑  →  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉  ·  ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝑅 ‘ ( 𝐹 ‘ 𝑋 ) ) 〉  ·  ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( 𝐵 ‘ ( 𝐹 ‘ 𝑋 ) ) ) )  |